Simple theories	NSOP ₁ theories	\downarrow^{K} over sets	Lachlan's problem	Transitivity	Others	Open problems
000000	000000	000	000	00	00	00

A report on NSOP₁ theories

Byunghan Kim

ALC 2019

Yonsei University, South Korea June 20, 2019

Byunghan Kim A report on NSOP₁ theories : クへへ ALC 2019

イロト イ団ト イヨト イヨト 二日

Simple theories	NSOP ₁ theories	\downarrow^K over sets	Lachlan's problem	Transitivity	Others	Open problems
000000	000000	000	000	00	00	00

<<p>(日)

SQA

ALC 2019

Outline

- Simple theories
- 2 NSOP $_1$ theories
- $\mathbf{3} \cup^{\mathcal{K}} \text{over sets}$
- 4 Lachlan's problem

5 Transitivity

- 6 Others
- Open problems

- A. Chernikov and N. Ramsey, On model theoretic tree properties, J. of Math. Logic (2016).
- I. Kaplan and N. Ramsey, On Kim-independence, To appear in J. of European Math. Society.
- I. Kaplan and N. Ramsey, Transitivity of Kim-independence, Preprint.
- J. Dobrowolski, B. Kim, and N. Ramsey, Independence over arbitrary sets in NSOP₁ theories. Preprint.
- B. Kim, On the number of countable models of a countable NSOP₁ theory without weight ω, Preprint.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

• A. Chernikov, B. Kim, and N. Ramsey, Transitivity, lowness and ranks in NSOP₁ theories, Preprint.

Simple theories	NSOP ₁ theories	\downarrow^{K} over sets	Lachlan's problem	Transitivity	Others	Open problems
00000	000000	000	000	00	00	00

We work in a fixed saturated model \mathcal{M} of $\mathcal{T} = \mathsf{Th}(\mathcal{M})$ in \mathcal{L} .

Definition

- A formula φ(x, a₀) divides over A if there is an A-indiscernible sequence (a_i | i < ω) such that {φ(x, a_i) | i < ω} is inconsistent.
- A type p(x) divides over A if $p \vdash \varphi(x, a)$ and $\varphi(x, a)$ divides over A.
- A type p(x) forks over A if $p \vdash \varphi_0(x, a_0) \lor ... \lor \varphi_n(x, a_n)$ and $\varphi_i(x, a_i)$ divides over A for each $i \le n$.

Write $A \downarrow_B C$ if for any $a \in A$, tp(a/BC) does not fork over B.

Let $A \subseteq B \subseteq C$.

- (Extension) If $d \downarrow_A B$, then there is $d' \equiv_B d$ such that $d' \downarrow_A C$.
- (Base monotonicity) If $d \downarrow_A C$ then $d \downarrow_B C$ holds.

イロト 不得 トイヨト イヨト 二日

Fact (K.)

The following are equivalent.

- (Symmetry) $A \downarrow_B C$ iff $C \downarrow_B A$.
- (Transitivity) For $A \subseteq B \subseteq C$, if $D \downarrow_A B$ and $D \downarrow_B C$ then $D \downarrow_A C$ holds.
- (Local character) For any set A and finite d, there is $A_0(\subseteq A)$ of size $\leq |T|$ such that $d \downarrow_{A_0} A$.

Definition

- *T* is said to be *simple* if one of the above equivalent properties of nonforking holds.
- *T* is *unstable* if there are $\varphi(x, y)$ and $a_i, b_i \in \mathcal{M}$ $(i < \omega)$ such that $\mathcal{M} \models \varphi(a_i, b_j)$ iff i < j.

900

• T is stable if it is not unstable.

Any stable theory is simple.

 $I = \langle a_i \mid i < \omega \rangle$ is said to be a *Morley sequence* over A (or say, in tp (a_0/A)) if I is A-indiscernible, and $a_i \downarrow_A a_{<i}$ for all $i < \omega$.

If T is simple then for any $p(x) \in S(A)$, there is a Morley sequence in p.

Kim's Lemma

Assume T is simple(= local character for \downarrow). Then the following are equivalent.

- $\varphi(x, a_0)$ divides over A.
- For some Morley sequence (a_i | i < ω) over A, {φ(x, a_i) | i < ω} is inconsistent.
- For any Morley sequence (a_i | i < ω) over A, {φ(x, a_i) | i < ω} is inconsistent.

・ロト ・四ト ・ヨト ・ヨト 三日

590

Corollary

If T is simple then the notions of forking and dividing coincide.

Theorem (K., Pillay)

- If T is simple then \downarrow additionally satisfies the following axiom (The Independence Theorem (or 3-amalgamation) over models): If $c_0 \equiv_M c_1$, $a_0 \downarrow_M a_1$, and $c_i \downarrow_M a_i$ (i = 0, 1), then there is $c \equiv_{Ma_i} c_i$ such that $c \downarrow_M a_0 a_1$.
- The five basic axioms together with the above axiom characterize simplicity and forking.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stable	Simple	NSOP ₁
Infinite set	The random graph	The parametrized equi. rel.s
ACF	Bounded PAC fields	ω -free PAC fields
V = vector sapce	$ig(m{V},\langle, angleig)$ / a finite $m{F}$	$ig(V,\langle, angleig)$ / an infinite F

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We say T has the *tree property* if there exist a formula $\varphi(x, y)$ and tuples c_{α} with $\alpha \in \omega^{<\omega}$ such that (i) for all $\beta \in \omega^{\omega}$, $\{\varphi(x, c_{\beta \restriction n}) \mid n \in \omega\}$ is consistent; and (ii) for any $\alpha \in \omega^{<\omega}$, $\{\varphi(x, c_{\alpha \frown n}) \mid n \in \omega\}$ is 2-inconsistent.

<□▶ <四▶ <至▶ <至▶ = 至

Proposition (Shelah)

T is simple iff T does not have the tree property.

Simple theories	NSOP ₁ theories	\downarrow^K over sets	Lachlan's problem	Transitivity	Others	Open problems
000000	00000	000	000	00	00	00

Shelah introduced the notion of SOP_1 .

Definition

- We say a formula φ(x, y) has SOP₁ if there is a set of tuples {c_α | α ∈ 2^{<ω}} such that
 (i) for any β ∈ 2^ω, {φ(x, c_{β↑m}) | m ∈ ω} is consistent; and
 (ii) {φ(x, c_{α¬(1)}), φ(x, c_γ)} is inconsistent whenever
 α[¬]⟨0⟩ ≤ γ ∈ 2^{<ω}.
- We say T has SOP₁ if for some formula has SOP₁.
- We say T is NSOP₁ if T does not have SOP₁.

 SOP_1 implies the tree property. So any simple theory is NSOP_1 .

イロト 不得下 不足下 不足下 一足

Theorem (Chernikov, Ramsey)

The following are equivalent.

- T has SOP₁.
- There are a formula φ(x, y) and an indiscernible sequence
 (a_ic_i | i < ω) such that {φ(x, a_i) | i < ω} is consistent,
 {φ(x, c_i) | i < ω} is inconsistent, and a_i ≡_{(ac)<i} c_i for each i < ω.</p>

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = □

Definition/Remark

- Let M(≺ M) be a model. We say a global type q ∈ S(M) is M-invariant if for any b, b' if b ≡_M b' implies φ(x, b) ∈ q iff φ(x, b') ∈ q.
- Fact: Any type $p \in S(M)$ has a global extension which is *M*-invariant.
- We say I = ⟨a_i | i < ω⟩ is a global Morley sequence over M, if there is some M-invariant global type q such that a_i ⊨ q ↾ Ma_{<i} for each i < ω. It easily follows that I is a Morley sequence over M (but not the converse).
- We say φ(x, a₀) Kim-divides over M if {φ(x, a_i) | i < ω} is inconsistent for some global Morley sequence ⟨a_i | i < ω⟩ over M.
- A type p(x) Kim-divides over M if so does a formula implied from it; p(x) Kim-forks over M if p ⊢ φ₀(x, a₀) ∨ ... ∨ φ_n(x, a_n) and φ_i(x, a_i) Kim-divides over M for each i ≤ n.
- Write $a \perp_{M}^{K} b$ if tp(a/Mb) does not Kim-divides over M.

Lemma (Kaplan, Ramsey)

(Kim's lemma for ${\perp}^{\kappa}$ over models) Let T be NSOP₁. Then the following are equivalent.

- $\varphi(x, a_0)$ Kim-divides over M.
- { $\varphi(x, a_i) \mid i < \omega$ } is inconsistent for any global Morley sequence $\langle a_i \mid i < \omega \rangle$ over M.

Corollary

(T NSOP₁) Kim-forking = Kim-dividing (over models), so \downarrow^{K} satisfies extension over models: If a \downarrow^{K}_{M} b then for any c, there is a' \equiv_{Mb} a such that a' \downarrow^{K}_{M} bc.

《曰》 《聞》 《臣》 《臣》 三臣

Theorem (Kaplan, Ramsey)

The following are equivalent.

- T is NSOP₁.
- (Symmetry of \downarrow^{κ} over models) a \downarrow^{κ}_{M} b iff b \downarrow^{κ}_{M} a.
- (Transitivity of \downarrow^{K} over models) For models $M \prec N$, if $d \downarrow_{M} N$ and $d \downarrow_{N} b$ then $d \downarrow_{M}^{K} Nb$ holds.
- (3-amalgamation of \downarrow^{K} over models) If $c_{0} \equiv_{M} c_{1}$, $a_{0} \downarrow_{M}^{K} a_{1}$, and $c_{i} \downarrow_{M}^{K} a_{i}$ (i = 0, 1), then there is $c \equiv_{Ma_{i}} c_{i}$ such that $c \downarrow_{M}^{K} a_{0}a_{1}$.

Moreover above two axioms together with strong finite character, existence, and witness axioms characterize $NSOP_1$ and Kim-dividing over models.

But in general *base monotonicity* fails to hold in NSOP₁ T:

- For models $M \prec N$, $d \downarrow_M^K Nb$ need not imply $d \downarrow_N^K b$.
- $a \downarrow_M^K bc$ and $b \downarrow_M^K c$ need not imply $ab \downarrow_M^K c$.

Proposition (Kaplan, Ramsey)

Assume T is $NSOP_1$. The following are equivalent.

- $\varphi(x, a_0)$ Kim-divides over M.
- For any Morley sequence (a_i | i < ω) over M, {φ(x, a_i) | i < ω} is inconsistent.

《曰》 《圖》 《臣》 《臣》

- 2

Simple theories	NSOP ₁ theories	\downarrow^K over sets	Lachlan's problem	Transitivity	Others	Open problems
000000	000000	000	000	00	00	00

Nonforking Existence

Any formula over a set does not fork over the set. Equivalently, in any $p(x) \in S(A)$, there is a Morley sequence in p.

For the rest, unless said otherwise. we assume T is NSOP₁ and has nonforking existence. (Any simple T has nonforking existence. Does any NSOP₁ T have this too?)

Even in a simple T, for a set A, a type $p(x) \in S(A)$ need not have a global A-invariant extension.

Definition

 $\varphi(x, a_0)$ Kim-divides over A if for some Morley sequence $\langle a_i \mid i < \omega \rangle$, $\{\varphi(x, a_i) \mid i < \omega\}$ is inconsistent. Similally define for a type to Kim-divide/fork over a set.

Write $a \downarrow_A^K b$ if tp(a/Ab) does not Kim-divide over A. This notion is coherent with the case when A is a model.

If T is simple then by Kim's lemma, $\downarrow^{K} = \downarrow$.

Byunghan Kim

- Tuples a, b have the same Lascar (strong) type over A (write a ≡^L_A b, or Lstp(a/A) = Lstp(b/A)) if there are a = a₀, a₁,..., a_n = b such that for each i < n, a_ia_{i+1} begin an indiscernible sequence over A.
- Tuples *a*, *b* have the same *KP*-type over *A* (write $a \equiv_A^{KP} b$) if they are in the same class of every *A*-type-definable bounded equivalence relation.
- Tuples a, b have the same strong type over A (write a ≡^s_A b) if they are in the same class of every A-definable finite equivalence relation.

In general,
$$a \equiv^{L}_{A} b \Rightarrow a \equiv^{KP}_{A} b \Rightarrow a \equiv^{s}_{A} b.$$

Theorem (K., Pillay)

Let T be simple.

• (3-amalgamation for Lascar types) If $a_0 \equiv_A^L a_1$, $c_0 \downarrow_A c_1$, and $a_i \downarrow_A c_i$ (i = 0, 1), then there is $a \equiv_{Ac_i}^L a_i$ such that $a \downarrow_A c_0 c_1$.

《曰》 《聞》 《臣》 《臣》 三臣

• T is G-compact. (That is, $a \equiv_A^L b \Leftrightarrow a \equiv_A^{KP} b$.)

Lemma (Dobrowolski, K., Ramsey)

(Kim's lemma for \downarrow^{κ} over sets) The following are equivalent.

- $\varphi(x, a_0)$ Kim-divides over a set A.
- {φ(x, a_i) | i < ω} is inconsistent for any Morley sequence ⟨a_i | i < ω⟩ over A.

Theorem (Dobrowolski, K., Ramsey)

- Kim-dividing = Kim-forking (over sets).
- (Extension) If $d \downarrow_A^K B$, then there is $d' \equiv_B d$ such that $d' \downarrow_A^K C$.
- (Symmetry) $a \perp_A^K b$ iff $b \perp_A^K a$.
- (Type amalgamation for Lascar types w.r.t. \downarrow^{K}) If $a_0 \equiv^{L}_{A} a_1$, $c_0 \downarrow^{K}_{A} c_1$, and $a_i \downarrow^{K}_{A} c_i$ (i = 0, 1), then there is $a \equiv^{L}_{Ac_i} a_i$ such that $a \downarrow^{K}_{A} c_0 c_1$.

<ロト <回ト <注ト <注ト = 三

Corollary

T is G-compact.

Simple theories	NSOP ₁ theories	\downarrow^{K} over sets	Lachlan's problem	Transitivity	Others	Open problems
000000	000000	000	● 00	00	00	00

Lachlan's Problem

(*T* is any countable theory.)

If $1 < I(\omega, T)$ = the no. of countable non-isomorphic models of $T < \omega$ then T has the strict order property.

Recall that T has the *strict order property* if there is a definable ordering with an infinite chain, equivalently there are $\varphi(x, y)$ and a_i ($i < \omega$) such that

 $\models \varphi(x, a_j) \rightarrow \varphi(x, a_i) \text{ iff } i < j < \omega.$

- T is said to be *supersimple* if for any finite d, and a set A there is $A_0(\subseteq A)$ of size $\leq |T|$ such that $d \downarrow_{A_0} A$.
- *T* is *superstable* if *T* is stable and supersimple.

Theorem (Lachlan, 70s)

If countable T is superstable then $I(\omega, T)$ is either 1 or infinite.

Theorem (K., 90s)

If T is countable supersimple then $I(\omega, T)$ is either 1 or infinite.

Theorem (Pillay)

If T is countable stable and $1 < I(\omega, T) < \omega$ then there is a finite tuple whose own preweight is ω .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We return back to assume T is NSOP₁ with existence.

Definition

We say a tuple c (or its type) has own preweight ω if there are $b_i \equiv c$ ($i < \omega$) such that $c \not\downarrow^{\kappa} b_i$, and $b_i \downarrow^{\kappa} b_{<i}$ for all $i < \omega$.

Theorem (K.)

If T is countable and $1 < I(\omega, T) < \omega$ then there is a finite tuple whose own preweight is ω .

<□▶ <四▶ <至▶ <至▶ = 至

Simple theories	NSOP ₁ theories	\downarrow^K over sets	Lachlan's problem	Transitivity	Others	Open problems
000000	000000	000	000	•0	00	00

Theorem (Kaplan, Ramsey)

(Transitivity) Let $A \subseteq B \subseteq C$. If $d \downarrow_A^K B$ and $d \downarrow_B^K C$ then $d \downarrow_A^K C$.

Definition

An A-indiscernible sequence $\langle a_i \mid i < \omega \rangle$ is said to be \downarrow^{κ} -Morley over A if $a_i \downarrow_A^{\kappa} a_{<i}$ for all $i < \omega$.

Corollary

The following are equivalent.

- $\varphi(x, a_0)$ Kim-divides over A.
- For any [⊥]^K-Morley (a_i | i < ω) over A, {φ(x, a_i) | i < ω} is inconsistent.
- For some
 ^K-Morley (a_i | i < ω) over A, {φ(x, a_i) | i < ω} is inconsistent.

イロト 不得 トイヨト イヨト 二日

We say *T* is *low* if for any *L*-formula $\varphi(x, y)$, there is $k \ge 2$ such that whenever $\{\varphi(x, a_i) \mid i < \omega\}$ is inconsistent for some indiscernible $\langle a_i \mid i < \omega \rangle$, then it is *k*-inconsistent.

Hence if T is low then for any $\varphi(x, y)$, there is a type q(y) over \emptyset such that

q(b) holds if and only if $\varphi(x, b)$ divides over \emptyset .

<ロト <回ト <注ト <注ト = 三

Theorem (Buechler)

If T is low simple then strong types are Lascar types.

Theorem (Chernikov, K., Ramsey)

If T is low then strong types are Lascar types.

Simple theories	NSOP ₁ theories	\downarrow^{K} over sets	Lachlan's problem	Transitivity	Others ●○	Open problems

(T is any theory.)

Fact

- *T* is simple iff there do not exist finite *d* and increasing sets $\langle A_i | i < |T|^+ \rangle$ such that $d \not \sim_{A_i} A_{i+1}$ for each $i < |T|^+$.
- *T* is supersimple iff there do not exist finite d and increasing sets $\langle A_i \mid i < \omega \rangle$ such that $d \not \vdash_{A_i} A_{i+1}$ for each $i < \omega$.

Fact (Kaplan, Ramsey, Shelah)

T is NSOP₁ iff there do not exist finite *d* and a continuous increasing sequence $\langle M_i | i < |T|^+ \rangle$ of |T|-sized models such that $d \not\succeq_{M_i}^{\kappa} M_{i+1}$ for each $i < |T|^+$.

Fact (Casanovas, K.)

T is supersimple iff there do not exist finite d and increasing sets $\langle A_i \mid i < \omega \rangle$ such that $d \not \perp_{A_i}^{\kappa} A_{i+1}$ for each $i < \omega$.

Э

イロト 不得 トイヨト イヨト

- A binary graph V = (V, E) with |V| ≥ 2 is said to be *nice* if there are no triangles and squares; and for any two distinct a, b ∈ V there is c ∈ V such that E(a, c) but ¬E(b, c).
- Fix an odd prime p. For a nice graph V, let F(V) be the free nilpotent group of class 2 and exponent p generated by the vertices of V. Assume that V is enumerated as V = {a_i | i < κ}. Then the Mekler group of V, written G(V), is defined as

$$G(V) := F(V) / \langle [a_i, a_j] \mid i < j \text{ and } E(a_i, a_j) \rangle.$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = □

Theorem (Ahn)

Let V = (V, E) be a nice graph. Then Th(V) is $NSOP_1$ iff so is Th(G(V)).

• Does nonforking existence hold in any NSOP₁ T?

Shelah indeed introduced the notions of SOP_n for $n \ge 1$.

Definition

- T has SOP_n (n ≥ 3) if there is a formula φ(x, y) (|x| = |y|) defining a directed graph having an infinite chain but no cycle of length ≤ n.
- T has SOP₂ if there are a formula φ(x, y) and tuples c_α (α ∈ 2^{<ω}) such that, for each β ∈ 2^ω, {φ(x, c_{β[i} | i ∈ ω} is consistent; while for any incomparable α, γ ∈ 2^{<ω}, φ(x, a_α) ∧ φ(x, a_γ) is inconsistent.

Definition

- T has TP₁ if there are a formula φ(x, y) and tuples c_α (α ∈ ω^{<ω}) such that, for each β ∈ ω^ω, {φ(x, c_{β[i} | i ∈ ω} is consistent; while for any incomparable α, γ ∈ ω^{<ω}, φ(x, a_α) ∧ φ(x, a_γ) is inconsistent.
- T has TP₂ if there are a formula φ(x, y) and tuples c_{ij} (i, j < ω) such that, for each i ∈ ω, {φ(x, c_{ij} | j ∈ ω} is 2-inconsistent; while for any f : ω → ω, {φ(x, a_{if(i)}) | i < ω} is consistent.

Sac

Fact

- If T has the strict order property then it has SOP_n for each $n \ge 1$.
- If T has SOP_{n+1} then it has SOP_n for each n ≥ 1. But the converse does not hold if n ≥ 3.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

12

- T has the tree property iff T has TP_1 or TP_2 .
- T has TP₁ iff it has SOP₂.
- If T has SOP₁ then T has the tree property.
- Are the notions of SOP₁ and SOP₂ equivalent?
- Do canonical bases for Lascar types exist in any NSOP₁ T?
- Develop a theory of groups in NSOP₁ theories.