Large Scale Geometries of Infinite Strings

Toru Takisaka

National Institute of Informatics, Japan

June 18, 2019

Outline

- Introduction: Quasi-isometry between colored metric spaces
- Structure of \leq_{QI}
 - Lemmas: small cross-over, decomposition, reduction
 - Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on \leq_{QI}
 - Büchi automata and large scale geometries
 - Complexity of the quasi-isometry problem
 - Asymptotic cones

This talk is based on the following papers:

- Bakh Khoussainov, Toru Takisaka: Large Scale Geometries of Infinite Strings. Proc. LICS 2017.
- Bakh Khoussainov, Toru Takisaka: Infinite Strings and Their Large Scale Properties. Submitted.

The slide is available at my webpage

http://group-mmm.org/~toru/

Let (M_1, d_1) and (M_2, d_2) be metric spaces.

Definition

A map $f: M_1 \to M_2$ is an (A, B, C)-quasi-isometry, where $A \ge 1$, $B \ge 0$ and $C \ge 0$, if for all $x, y \in M_1$ we have

 $(1/A) \cdot d_1(x, y) - B \le d_2(f(x), f(y)) \le A \cdot d_1(x, y) + B,$

and for all $y \in M_2$ there is an $x \in M_1$ such that $d_2(y, f(x)) \leq C$.

When B = 0, the mapping is bi-Lipshitz. Thus, a quasi-isometry is a bi-Lipschitz map with a distortion.

Examples

Definition

A map $f: M_1 \to M_2$ is an (A, B, C)-quasi-isometry, where $A \ge 1$, $B \ge 0$ and $C \ge 0$, if for all $x, y \in M_1$ we have

 $(1/A) \cdot d_1(x, y) - B \le d_2(f(x), f(y)) \le A \cdot d_1(x, y) + B,$

and for all $y \in M_2$ there is an $x \in M_1$ such that $d_2(y, f(x)) \leq C$.

Example

 $\mathbb R$ and $\mathbb Z$ are quasi-isometric.

- The function f(n) = n is a (1, 0, 1)-quasi-isometry from $\mathbb Z$ to $\mathbb R$.
- The function $g(x) = \lceil x \rceil$ is a (1, 1, 0)-quasi-isometry from $\mathbb R$ to $\mathbb Z$.

Examples

Definition

A map $f: M_1 \to M_2$ is an (A, B, C)-quasi-isometry, where $A \ge 1$, $B \ge 0$ and $C \ge 0$, if for all $x, y \in M_1$ we have

 $(1/A) \cdot d_1(x, y) - B \le d_2(f(x), f(y)) \le A \cdot d_1(x, y) + B,$

and for all $y \in M_2$ there is an $x \in M_1$ such that $d_2(y, f(x)) \leq C$.

Example

Let G be a finitely generated group, and S and S' be its generators. Then the Cayley graphs of G based on S and S' are quasi-isometric.

Proof sketch: if $|g|_S = n$, then $|g|_{S'} \leq Mn$, where $M = \max_{s \in S} |s|_{S'}$. Thus the identity map on G is a quasi-isometry. The notion has been proposed by Gromov for the study of geometric group theory.

Studying quasi-isometry (QI) invariants of groups turned out to be crucial in solving many important problems. Hence, finding QI-invariants is an important theme in geometric group theory. Here are examples of QI-invariants:

- virtually nilpotent,
- virtually free,
- hyperbolic,
- having polynomial growth rate,
- Finite presentability,
- Having decidable word problem,
- Asymptotic cones, etc.

Infinite strings as coloured metric spaces

A coloured metric space is a tuple $\mathcal{M} = (M; d, C)$, where (M, d) is the metric space, and C is a colour function $C : M \to \Sigma$. If $\sigma = C(m)$ then m has colour σ .

Example

Consdier Σ^{ω} , the set of infinite strings over Σ . Each $\alpha \in \Sigma^{\omega}$ is a coloured metric space.

Definition

Let $\mathcal{M}_1 = (M_1; d_1, C_1)$ and $\mathcal{M}_2 = (M_2; d_2, C_2)$ be coloured metric spaces. A colour preserving (A, B, C)-quasi-isometry from $(M_1; d_1)$ into $(M_2; d_2)$ is a (A, B, C)-quasi-isometry from \mathcal{M}_1 into \mathcal{M}_2 .

If there exists such a function from \mathcal{M}_1 to \mathcal{M}_2 , then we write $\mathcal{M}_1 \leq_{QI} \mathcal{M}_2$.

The relation \leq_{QI}

Example

 $0^{\omega} \leq_{QI} (01)^{\omega}$ holds. The converse does not hold.

- Define a function $f: 0^{\omega} \to (01)^{\omega}$ by f(2n) = f(2n+1) = 2n.
- There is no colour-preserving function from $(01)^{\omega}$ to 0^{ω} .

Example

 $01001\ldots 0^n 1\ldots \leq_{QI} (01)^{\omega}$ holds. The converse does not hold.

Definition

The equivalence classes of \sim_{QI} are the quasi-isometry types or the large scale geometries of α . Set $\Sigma_{QI}^{\omega} = \Sigma^{\omega} / \sim_{QI}$. Denote by $[\alpha]$ the large scale geometry of α .

Example

The QI type $[(01)^{\omega}]$ is the set of all binary strings such that, for some constant M, any of its subsequence of the length M contains 0 and 1.

From now on, every coloured metric space that appear in the talk is an infinite string, which is denoted by $\alpha,\beta,\gamma,\ldots$

- Introduction: Quasi-isometry between colored metric spaces
- Structure of \leq_{QI}
 - Lemmas: small cross-over, decomposition, reduction
 - Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on \leq_{QI}
 - Büchi automata and large scale geometries
 - Complexity of the quasi-isometry problem
 - Asymptotic cones

Small Cross-Over Lemma

Lemma (Small Cross Over Lemma)

For any given quasi-isometry constants (A, B, C) there are constants $D \leq 0$ and $D' \leq 0$ such that for all quasi-isometry maps $g : \alpha \to \beta$ we have the following:

• For all $n, m \in \omega$ if n < m and g(m) < g(n) we have $g(m) - g(n) \ge D$.

 $\textbf{ Sor all } n,m \in \omega \text{ if } n < m \text{ and } g(m) < g(n) \text{ then } n-m \geq D'.$

Proof idea:

12/44

Lemma (Decomposition Lemma)

There exists a procedure that given (A, B, C)-quasi-isometry $f : \alpha \to \beta$ produces a decompositon of f into quasi-isometries $\alpha \xrightarrow{f_1} \gamma_1 \xrightarrow{f_2} \gamma_2 \xrightarrow{f_3} \beta$ such that each of the following holds:

- f_1 is a bijection, f_2 is a monotonic injection, and f_3 is a monotonic surjection.
- **2** f_1 is a monotonic injection, f_2 is a bijection, and f_3 is a monotonic surjection.
- **3** f_1 is a bijection, f_2 is a monotonic surjection, and f_3 is a monotonic injection.

Proof: decomposition into injection and mono surjection

14/44

Proof: injection \rightarrow mono injection and bijection

Componentwise reducibility

Definition

Say α is component-wise reducible to β , written $\alpha \leq_{CR} \beta$, if we can partition α and β as

$$\alpha = u_1 u_2 \dots$$
 and $\beta = v_1 v_2 \dots$

such that $Cl(u_i) \subseteq Cl(v_i)$ for all *i* and $|u_j|, |v_j|$ are uniformly bounded by a constant *C*. Call these presentations of α and β witnessing partitions and intervals u_i and v_i partitioning intervals.

Theorem

$$\alpha \leq_{QI} \beta$$
 implies $\alpha \leq_{CR} \beta$.

Proof idea

If the QI map is monotonic, then the proof is easy. It is not in the non-monotonic case.

We use a refined version of decomposition theorem and show a transitivity-like lemma.

A function of the following form is called an *atomic crossing map*:

Proof idea

Lemma

Any bijective quasi-isometry can be decomposed into finite number of atomic crossing maps, each of which are also quasi-isometry.

Lemma

Suppose $\alpha \leq_{QI} \beta$ via an atomic crossing map $f : \alpha \to \beta$ and $\beta \leq_{CR} \gamma$. Then $\alpha \leq_{CR} \gamma$.

 $(\alpha \leq_{QI} \beta \text{ implies } \alpha \leq_{CR} \beta)$ Decompose the QI map into $\alpha \xrightarrow{f_1} \gamma \xrightarrow{f_2} \beta$, where f_1 is bijective and f_2 is monotonic. Then apply the lemma above iteratively.

- Introduction: Quasi-isometry between colored metric spaces
- Structure of \leq_{QI}
 - Lemmas: small cross-over, decomposition, reduction
 - Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on \leq_{QI}
 - Büchi automata and large scale geometries
 - Complexity of the quasi-isometry problem
 - Asymptotic cones

Notations

- From now on we assume $\Sigma = \{0, 1\}$.
- For $\alpha = 0^{n_0} 1^{m_0} 0^{n_1} 1^{m_1} \ldots \in \{0, 1\}^{\omega} (n_i, m_i \ge 1)$, we call 0^{n_i} and 1^{m_i} the 0-blocks and 1-blocks, respectively.

0-blocks

• An infinite succession of $\sigma \in \Sigma$ is also called a σ -block.

0-block 111100000000...

Global nature of Σ_{QI}^{ω}

We split the set Σ_{QI}^{ω} into four subsets:

- $\mathcal{X}(0) = \{ [\alpha] \mid \text{in } \alpha \text{ all the lengths of } 0 \text{-blocks are universally bounded} \},$
- $\mathcal{X}(1) = \{ [\alpha] \mid \text{in } \alpha \text{ the lengths of all } 1\text{-blocks are universally bounded} \},$
- $\mathcal{X}(u) = \{[\alpha] \mid \text{in } \alpha \text{ the lengths of both } 0\text{-blocks and } 1\text{-blocks are unbounded}\},$
- $\mathcal{X}(b) = \{ [\alpha] \mid \text{in } \alpha \text{ the lengths of both } 0\text{-blocks and } 1\text{-blocks are universally bounded} \}.$

Theorem

The sets $\mathcal{X}(0)$, $\mathcal{X}(1)$, $\mathcal{X}(u)$, $\mathcal{X}(b)$ have the following properties:

- The sets $\mathcal{X}(0)$ and $\mathcal{X}(1)$ are filters.
- **2** The set $\mathcal{X}(u)$ is an ideal.
- The set $\mathcal{X}(b)$ is the singleton $\{[(01)^{\omega}]\}$.

- The set $\mathcal{X}(b)$ is the singleton $\{[(01)^{\omega}]\}$, and is the greatest element.
- The sets $\mathcal{X}(0)$ and $\mathcal{X}(1)$ are filters.
- The set $\mathcal{X}(u)$ is an ideal.
- $[0^{\omega}]$ and $[1^{\omega}]$ are minimal.

• $\mathcal{X}(0), \mathcal{X}(1)$ and $\mathcal{X}(u)$ contain chains $(\alpha_n)_{n \in \mathbb{Z}}$ of the type of integers, that is $\forall n \in \mathbb{Z}[\alpha_n <_{QI} \alpha_{n+1}].$

Proof:

$$\alpha_1 = 0101001001 \dots 0^{2^n} 10^{2^n} 1 \dots$$
$$\alpha_0 = 01001 \dots 0^{2^n} 1 \dots$$
$$\alpha_{-1} = 0100001 \dots 0^{4^n} 1 \dots$$

• $\mathcal{X}(0), \mathcal{X}(1)$ and $\mathcal{X}(u)$ have countable antichains.

Proof:

$$\beta_n = 010^{2^n} 1^{2^n} 0^{3^n} 1^{3^n} \dots 0^{k^n} 1^{k^n} \dots$$

• Σ^{ω}_{QI} possesses infinitely many minimal elements.

Proof. For any unbounded nondecreasing sequence $\{a_n\}_{n\in\omega}$, the following sequence is minimal:

$$\alpha = 0^{a_0} 1^{a_1} 0^{a_2} 1^{a_3} \dots 0^{a_{2k}} 1^{a_{2k+1}} \dots$$

Problem

Are there uncountably many minimal elements?

Density

Theorem (**Density Theorem**)

Let $\alpha, \beta \in \Sigma^{\omega}$ be given. Assume $\alpha <_{QI} \beta$, and every letter in α or β occurs in both α and β infinitely many often. Then there exists $\gamma \in \Sigma^{\omega}$ such that $\alpha <_{QI} \gamma <_{QI} \beta$. Morever, there are infinitely many γ 's that satisfy this inequality, and not quasi-isometric each other. Some naive definitions turn out to be not well-defined (i.e. there are $\alpha \sim_{QI} \alpha'$ and $\beta \sim_{QI} \beta'$ such that $[\alpha \wedge \beta] \neq [\alpha' \wedge \beta']$).

•
$$\alpha \wedge \beta = \alpha(0)\beta(0)\alpha(1)\beta(1)\dots$$

• $\alpha \wedge \beta = \alpha \text{ XOR } \beta$

Theorem (Stephan+, personal communication)

There are strings α and β for which no least upper bound exist.

- Introduction: Quasi-isometry between colored metric spaces
- Structure of \leq_{QI}
 - Lemmas: small cross-over, decomposition, reduction
 - Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on \leq_{QI}
 - Büchi automata and large scale geometries
 - Complexity of the quasi-isometry problem
 - Asymptotic cones

Atlas

Definition

An atlas is a set of quasi-isometry types. In particular, the atlas defined by the language L is the set $[L] = \{ [\alpha] \mid \alpha \in L \}$, where $[\alpha]$ is the quasi-isometry type of α .

Definition

A Büchi automaton \mathcal{M} is a quadruple (S, ι, Δ, F) , where S is a finite set of states, $\iota \in S$ is the initial state, $\Delta \subset S \times \Sigma \times S$ is the transition table, and $F \subseteq S$ is the set of accepting states.

Theorem

- $[\{(01)^{\omega}\}], [\{1^{\omega}\}], [\{0^{\omega}\}], [\{01^{\omega}\}], [\{10^{\omega}\}],$
- $\Sigma_{QI}^{\omega} \setminus \{[0^{\omega}], [1^{\omega}], [10^{\omega}], [01^{\omega}]\},\$
- $\mathcal{X}(0) \setminus \{[1^{\omega}], [01^{\omega}]\},\$
- $\mathcal{X}(1) \setminus \{[0^{\omega}], [10^{\omega}]\}.$

Theorem

- $[\{(01)^{\omega}\}], [\{1^{\omega}\}], [\{0^{\omega}\}], [\{01^{\omega}\}], [\{10^{\omega}\}],$
- $\Sigma_{QI}^{\omega} \setminus \{[0^{\omega}], [1^{\omega}], [10^{\omega}], [01^{\omega}]\},\$
- $\mathcal{X}(0) \setminus \{[1^{\omega}], [01^{\omega}]\},\$
- $\mathcal{X}(1) \setminus \{[0^{\omega}], [10^{\omega}]\}.$

Theorem

- $[\{(01)^{\omega}\}], [\{1^{\omega}\}], [\{0^{\omega}\}], [\{01^{\omega}\}], [\{10^{\omega}\}],$
- $\Sigma_{QI}^{\omega} \setminus \{[0^{\omega}], [1^{\omega}], [10^{\omega}], [01^{\omega}]\},\$
- $\mathcal{X}(0) \setminus \{[1^{\omega}], [01^{\omega}]\},\$
- $\mathcal{X}(1) \setminus \{[0^{\omega}], [10^{\omega}]\}.$

Theorem

- $[\{(01)^{\omega}\}], [\{1^{\omega}\}], [\{0^{\omega}\}], [\{01^{\omega}\}], [\{10^{\omega}\}],$
- $\Sigma_{QI}^{\omega} \setminus \{[0^{\omega}], [1^{\omega}], [10^{\omega}], [01^{\omega}]\},\$
- $\mathcal{X}(0) \setminus \{[1^{\omega}], [01^{\omega}]\},\$
- $\mathcal{X}(1) \setminus \{[0^{\omega}], [10^{\omega}]\}.$

Proof idea

Call a loop of a Büchi automaton a *0-loop* if only 0 is read through the loop. Define *1-loops* and *01-loops* in a similar way. Then all Büchi automata are categorized by the following features:

- if it has a 0-loop, 1-loop, and 01-loop or not; and
- how these loops are connected.

For example,

- if it has 0-loop and 1-loop, the initial state is in 0-loop and can move from one loop to another, then the automaton accepts $\Sigma_{OI}^{\omega} \setminus [1^{\omega}]$.
- If it has 0-loop and 01-loop, the initial state is in 0-loop and can move from one loop to another, then the automaton accepts $\mathcal{X}(1)$.

Decidability result

Corollary

There exists an algorithm that, given Büchi automata A and B, decides if the atlases [L(A)] and [L(B)] coincide. Furthermore, the algorithm runs in linear time on the size of the input automata.

In contrast, the problem of deciding whether two given Büchi automata represent the same language is PSPACE-complete.

- Introduction: Quasi-isometry between colored metric spaces
- Structure of \leq_{QI}
 - Lemmas: small cross-over, decomposition, reduction
 - Structure theorems: infinite chain, infinite antichain, density, etc.
- $\bullet \ \, {\sf Problems} \ \, {\sf on} \ \, \leq_{QI}$
 - Büchi automata and large scale geometries
 - Complexity of the quasi-isometry problem
 - Asymptotic cones

Problem and our result

The quasi-isometry problem consists of determining if given two strings α and β are quasi-isometric. Formally, the quasi-isometry problem (over the alphabet Σ) is identified as the set:

$$QIP = \{ (\alpha, \beta) \mid \alpha, \beta \in \Sigma^{\omega} \& [\alpha] = [\beta] \}.$$

Theorem

The following statements are true:

- Given quasi-isometric strings α and β, there exists a quasi-isometry between α and β computable in the halting set relative to α and β.
- **2** The quasi-isometry problem between computable strings, that is the following set $QIP = \{(\alpha, \beta) \mid \alpha, \beta \in \Sigma^{\omega}, [\alpha] = [\beta], \alpha \text{ and } \beta \text{ are computable}\}$ is a complete Σ_2^0 -set.

Problem

Given quasi-isometric strings α and β , does there exist a computable quasi-isometry between them?

- Introduction: Quasi-isometry between colored metric spaces
- Structure of \leq_{QI}
 - Lemmas: small cross-over, decomposition, reduction
 - Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on \leq_{QI}
 - Büchi automata and large scale geometries
 - Complexity of the quasi-isometry problem
 - Asymptotic cones

Basic setting

- Let $\alpha \in \Sigma^{\omega}$ be a coloured metric space.
- We call $s: \omega \to \omega$ a *scaling factor* if it is strictly monotonic and s(0) = 1.
- Let $d_n(i,j) = |i j| / s(n)$.

We define the following sequence of metric spaces:

$$X_{0,\alpha} = (\alpha, d_0), \ X_{1,\alpha} = (\alpha, d_1), \dots, X_{n,\alpha} = (\alpha, d_n), \dots$$

We want to define a "limit" of this sequence in a formal way to treat the large scale geometry of α . We adopt the notion of asymptotic cone to do that.

- Let $\mathcal{F} \subset P(\omega)$ be a non-principal ultrafilter.
- Let $\mathbf{a} = (a_n)_{n \ge 0}$ be a sequence, where $a_n \in X_{n,\alpha}$.
- a is \mathcal{F} -bounded if $\{n \mid d_n(0, a_n) < L\} \in \mathcal{F}$ for some L.
- Let $\mathbf{B}(\mathcal{F},s)$ be the set of all bounded sequences $\mathbf{a} = (a_n)_{n \ge 0}$.
- a, $\mathbf{b} \in \mathbf{B}(\mathcal{F},s)$ is said to be \mathcal{F} -equivalent $(\mathbf{a}\sim_{\mathcal{F}}\mathbf{c})$ if

 $\forall \epsilon > 0[\{n \mid d_n(a_n, b_n) \le \epsilon\} \in \mathcal{F}].$

Asymptotic cone

Definition

For given sequence α , scaling function s and ultrafilter \mathcal{F} , the asymptotic cone of α , written $Cone(\alpha, \mathcal{F}, s)$, with respect to the scaling function s(n) and the ultra-filter \mathcal{F} is the factor set

 $\mathbf{B}(\mathcal{F},s)/\sim_{\mathcal{F}}$

equipped with the following metric D and colour C:

D(a, b) = r if and only if for every ε the set {n | r - ε ≤ d_n(a_n, b_n) ≤ r + ε} belong to F.
C(a) = σ if and only if the set {n | a_n has colour σ} belongs to F.

Results

The following theorems are coloured variant of a known results in geometric group theory, which says the set of all asymptotic cones modulo quasi-isometry is "simpler" than Σ_{QI}^{ω} .

Theorem

If strings α and β are quasi-isometric then the following holds for the asymptotic cones $Cone(\alpha, \mathcal{F}, s)$ and $Cone(\beta, \mathcal{F}, s)$.

- They are bi-Lipschitz equivalent; i.e. they are quasi-isometric with the additive constant B = 0.
- 2 The bi-Lipscitz map above can be taken as a order preserving map.

Theorem

There are two non-quasi-isometric strings $\alpha, \beta \in \{0,1\}^{\omega}$, a scale factor s(n), and filter \mathcal{F} such that the cones $Cone(\alpha, \mathcal{F}, s)$ and $Cone(\beta, \mathcal{F}, s)$ coincide.

Results

Theorem

If α is Martin-Löf random, then for all computable scaling factors s and ultra-filters \mathcal{F} , the asymptotic cone $Cone(\alpha, \mathcal{F}, s)$ coincides with the space $(\mathcal{R}_{\geq 0}; d, C)$, where all reals have all colours from alphabet Σ .

Future work

- Open problems
 - Cardinality of the set of minimal elements
 - Existence of computable QI-map for computable sequences
 - There are some more...
- Degree theory for \leq_{QI} (ongoing w/ F. Stephan, S. Jain)