Outline

- Introduction: Quasi-isometry between colored metric spaces
- Structure of \leq_{QI}
 - Lemmas: small cross-over, decomposition, reduction
 - Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on \leq_{QI}
 - Büchi automata and large scale geometries
 - Complexity of the quasi-isometry problem
 - Asymptotic cones
This talk is based on the following papers:

The slide is available at my webpage

- http://group-mmm.org/~toru/
Quasi-isometries

Let \((M_1, d_1)\) and \((M_2, d_2)\) be metric spaces.

Definition

A map \(f : M_1 \to M_2\) is an \((A, B, C)\)-quasi-isometry, where \(A \geq 1, B \geq 0\) and \(C \geq 0\), if for all \(x, y \in M_1\) we have

\[
\frac{1}{A} \cdot d_1(x, y) - B \leq d_2(f(x), f(y)) \leq A \cdot d_1(x, y) + B,
\]

and for all \(y \in M_2\) there is an \(x \in M_1\) such that \(d_2(y, f(x)) \leq C\).

When \(B = 0\), the mapping is bi-Lipschitz. Thus, a quasi-isometry is a bi-Lipschitz map with a distortion.
Definition

A map $f : M_1 \rightarrow M_2$ is an (A, B, C)–quasi-isometry, where $A \geq 1$, $B \geq 0$ and $C \geq 0$, if for all $x, y \in M_1$ we have

$$
\frac{1}{A} \cdot d_1(x, y) - B \leq d_2(f(x), f(y)) \leq A \cdot d_1(x, y) + B,
$$

and for all $y \in M_2$ there is an $x \in M_1$ such that $d_2(y, f(x)) \leq C$.

Example

\mathbb{R} and \mathbb{Z} are quasi-isometric.

- The function $f(n) = n$ is a $(1, 0, 1)$–quasi-isometry from \mathbb{Z} to \mathbb{R}.
- The function $g(x) = \lceil x \rceil$ is a $(1, 1, 0)$–quasi-isometry from \mathbb{R} to \mathbb{Z}.
Examples

Definition

A map \(f : M_1 \to M_2 \) is an \((A, B, C)\)-quasi-isometry, where \(A \geq 1 \), \(B \geq 0 \) and \(C \geq 0 \), if for all \(x, y \in M_1 \) we have

\[
\frac{1}{A} \cdot d_1(x, y) - B \leq d_2(f(x), f(y)) \leq A \cdot d_1(x, y) + B,
\]

and for all \(y \in M_2 \) there is an \(x \in M_1 \) such that \(d_2(y, f(x)) \leq C \).

Example

Let \(G \) be a finitely generated group, and \(S \) and \(S' \) be its generators. Then the Cayley graphs of \(G \) based on \(S \) and \(S' \) are quasi-isometric.

Proof sketch: if \(|g|_S = n \), then \(|g|_{S'} \leq Mn \), where \(M = \max_{s \in S} |s|_{S'} \). Thus the identity map on \(G \) is a quasi-isometry.
Why do we need quasi-isometries

The notion has been proposed by Gromov for the study of geometric group theory. Studying quasi-isometry (QI) invariants of groups turned out to be crucial in solving many important problems. Hence, finding QI-invariants is an important theme in geometric group theory. Here are examples of QI-invariants:

1. Virtually nilpotent,
2. Virtually free,
3. Hyperbolic,
4. Having polynomial growth rate,
5. Finite presentability,
6. Having decidable word problem,
7. Asymptotic cones, etc.
A coloured metric space is a tuple $\mathcal{M} = (M; d, C)$, where (M, d) is the metric space, and C is a colour function $C : M \to \Sigma$. If $\sigma = C(m)$ then m has colour σ.

Example

Consider Σ^ω, the set of infinite strings over Σ. Each $\alpha \in \Sigma^\omega$ is a coloured metric space.

Definition

Let $\mathcal{M}_1 = (M_1; d_1, C_1)$ and $\mathcal{M}_2 = (M_2; d_2, C_2)$ be coloured metric spaces. A colour preserving (A, B, C)–quasi-isometry from $(M_1; d_1)$ into $(M_2; d_2)$ is a (A, B, C)–quasi-isometry from \mathcal{M}_1 into \mathcal{M}_2.

If there exists such a function from \mathcal{M}_1 to \mathcal{M}_2, then we write $\mathcal{M}_1 \leq_{QI} \mathcal{M}_2$.
The relation \leq_{QI}

Example

$0^\omega \leq_{QI} (01)^\omega$ holds. **The converse does not hold.**

- Define a function $f : 0^\omega \rightarrow (01)^\omega$ by $f(2^n) = f(2n+1) = 2n$.
- There is no colour-preserving function from $(01)^\omega$ to 0^ω.

Example

$01001\ldots 0^n1\ldots \leq_{QI} (01)^\omega$ holds. **The converse does not hold.**
Large scale geometries

Definition

The equivalence classes of \sim_{QI} are the quasi-isometry types or the large scale geometries of α. Set $\Sigma_{QI} = \Sigma^\omega / \sim_{QI}$. Denote by $[\alpha]$ the large scale geometry of α.

Example

The QI type $[(01)^\omega]$ is the set of all binary strings such that, for some constant M, any of its subsequence of the length M contains 0 and 1.

From now on, every coloured metric space that appear in the talk is an infinite string, which is denoted by $\alpha, \beta, \gamma, ...$
Introduction: Quasi-isometry between colored metric spaces

Structure of \(\leq_{QI} \)
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.

Problems on \(\leq_{QI} \)
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones
Lemma (Small Cross Over Lemma)

For any given quasi-isometry constants (A, B, C) there are constants $D \leq 0$ and $D' \leq 0$ such that for all quasi-isometry maps $g : \alpha \rightarrow \beta$ we have the following:

1. For all $n, m \in \omega$ if $n < m$ and $g(m) < g(n)$ we have $g(m) - g(n) \geq D$.

2. For all $n, m \in \omega$ if $n < m$ and $g(m) < g(n)$ then $n - m \geq D'$.

Proof idea:
Decomposition Lemma

Lemma (Decomposition Lemma)

There exists a procedure that given \((A, B, C)\)–quasi-isometry \(f : \alpha \to \beta\) produces a decomposition of \(f\) into quasi-isometries \(\alpha \xrightarrow{f_1} \gamma_1 \xrightarrow{f_2} \gamma_2 \xrightarrow{f_3} \beta\) such that each of the following holds:

1. \(f_1\) is a bijection, \(f_2\) is a monotonic injection, and \(f_3\) is a monotonic surjection.
2. \(f_1\) is a monotonic injection, \(f_2\) is a bijection, and \(f_3\) is a monotonic surjection.
3. \(f_1\) is a bijection, \(f_2\) is a monotonic surjection, and \(f_3\) is a monotonic injection.
Proof: decomposition into injection and mono surjection
Proof: injection \rightarrow mono injection and bijection
Definition

Say \(\alpha \) is component-wise reducible to \(\beta \), written \(\alpha \leq_{CR} \beta \), if we can partition \(\alpha \) and \(\beta \) as

\[
\alpha = u_1 u_2 \ldots \text{ and } \beta = v_1 v_2 \ldots
\]

such that \(Cl(u_i) \subseteq Cl(v_i) \) for all \(i \) and \(|u_j|, |v_j| \) are uniformly bounded by a constant \(C \). Call these presentations of \(\alpha \) and \(\beta \) witnessing partitions and intervals \(u_i \) and \(v_i \) partitioning intervals.

Theorem

\(\alpha \leq_{QI} \beta \) implies \(\alpha \leq_{CR} \beta \).
If the QI map is monotonic, then the proof is easy. It is not in the non-monotonic case. We use a refined version of decomposition theorem and show a transitivity-like lemma. A function of the following form is called an *atomic crossing map*:
Proof idea

Lemma

Any bijective quasi-isometry can be decomposed into finite number of atomic crossing maps, each of which are also quasi-isometry.

Lemma

Suppose \(\alpha \leq_{QI} \beta \) via an atomic crossing map \(f : \alpha \rightarrow \beta \) and \(\beta \leq_{CR} \gamma \). Then \(\alpha \leq_{CR} \gamma \).

(\(\alpha \leq_{QI} \beta \) implies \(\alpha \leq_{CR} \beta \).) Decompose the QI map into \(\alpha \xrightarrow{f_1} \gamma \xrightarrow{f_2} \beta \), where \(f_1 \) is bijective and \(f_2 \) is monotonic. Then apply the lemma above iteratively.
Introduction: Quasi-isometry between colored metric spaces

Structure of \leq_{QI}
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.

Problems on \leq_{QI}
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones
From now on we assume $\Sigma = \{0, 1\}$.

For $\alpha = 0^{n_0}1^{m_0}0^{n_1}1^{m_1} \ldots \in \{0, 1\}^\omega (n_i, m_i \geq 1)$, we call 0^{n_i} and 1^{m_i} the 0-blocks and 1-blocks, respectively.

An infinite succession of $\sigma \in \Sigma$ is also called a σ-block.
We split the set Σ_{QI}^ω into four subsets:

- $\mathcal{X}(0) = \{ [\alpha] \mid \text{in } \alpha \text{ all the lengths of 0-blocks are universally bounded} \}$,
- $\mathcal{X}(1) = \{ [\alpha] \mid \text{in } \alpha \text{ the lengths of all 1-blocks are universally bounded} \}$,
- $\mathcal{X}(u) = \{ [\alpha] \mid \text{in } \alpha \text{ the lengths of both 0-blocks and 1-blocks are unbounded} \}$,
- $\mathcal{X}(b) = \{ [\alpha] \mid \text{in } \alpha \text{ the lengths of both 0-blocks and 1-blocks are universally bounded} \}$.

Theorem

The sets $\mathcal{X}(0)$, $\mathcal{X}(1)$, $\mathcal{X}(u)$, $\mathcal{X}(b)$ have the following properties:

1. The sets $\mathcal{X}(0)$ and $\mathcal{X}(1)$ are filters.
2. The set $\mathcal{X}(u)$ is an ideal.
3. The set $\mathcal{X}(b)$ is the singleton $\{ [(01)\omega] \}$.
The set $\mathcal{X}(b)$ is the singleton $\{(01)^{\omega}\}$, and is the greatest element.

The sets $\mathcal{X}(0)$ and $\mathcal{X}(1)$ are filters.

The set $\mathcal{X}(u)$ is an ideal.

$[0^{\omega}]$ and $[1^{\omega}]$ are minimal.
Structure theorems

- $X(0)$, $X(1)$ and $X(u)$ contain chains $(\alpha_n)_{n \in \mathbb{Z}}$ of the type of integers, that is
 \[\forall n \in \mathbb{Z} [\alpha_n <_{QI} \alpha_{n+1}] \]

Proof:

\[\alpha_1 = 0101001001 \ldots 0^{2^n} 10^{2^n} 1 \ldots \]
\[\alpha_0 = 01001 \ldots 0^{2^n} 1 \ldots \]
\[\alpha_{-1} = 0100001 \ldots 0^{4^n} 1 \ldots \]
\(\mathcal{X}(0), \mathcal{X}(1) \) and \(\mathcal{X}(u) \) have countable antichains.

Proof:

\[\beta_n = 010^{2n}1^{2n}0^{3n}1^{3n}...0^{kn}1^{kn}... \]
\(\Sigma_{QI}^\omega \) possesses infinitely many minimal elements.

Proof. For any unbounded nondecreasing sequence \(\{a_n\}_{n \in \omega} \), the following sequence is minimal:

\[
\alpha = 0^{a_0}1^{a_1}0^{a_2}1^{a_3}...0^{a_{2k}}1^{a_{2k+1}}...
\]

Problem: Are there uncountably many minimal elements?
Let $\alpha, \beta \in \Sigma^\omega$ be given. Assume $\alpha <_{QI} \beta$, and every letter in α or β occurs in both α and β infinitely many often. Then there exists $\gamma \in \Sigma^\omega$ such that $\alpha <_{QI} \gamma <_{QI} \beta$.

Moreover, there are infinitely many γ’s that satisfy this inequality, and not quasi-isometric each other.
Some naive definitions turn out to be not well-defined (i.e. there are $\alpha \sim_{QI} \alpha'$ and $\beta \sim_{QI} \beta'$ such that $[\alpha \land \beta] \neq [\alpha' \land \beta']$).

- $\alpha \land \beta = \alpha(0)\beta(0)\alpha(1)\beta(1) \ldots$
- $\alpha \land \beta = \alpha \text{ XOR } \beta$

Theorem (Stephan+, personal communication)

There are strings α and β for which no least upper bound exist.
Introduction: Quasi-isometry between colored metric spaces

Structure of \leq_{QI}
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.

Problems on \leq_{QI}
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones
Definition

An atlas is a set of quasi-isometry types. In particular, the atlas defined by the language L is the set $[L] = \{ [\alpha] \mid \alpha \in L \}$, where $[\alpha]$ is the quasi-isometry type of α.

Definition

A Büchi automaton \mathcal{M} is a quadruple (S, ι, Δ, F), where S is a finite set of states, $\iota \in S$ is the initial state, $\Delta \subseteq S \times \Sigma \times S$ is the transition table, and $F \subseteq S$ is the set of accepting states.
Theorem

Any atlas \([L]\) defined by a Büchi recognisable language \(L\) is a union from the following list of atlases:

- \(\{(01)^\omega\}\), \(\{1^\omega\}\), \(\{0^\omega\}\), \(\{01^\omega\}\), \(\{10^\omega\}\),
- \(\Sigma_{QI}^\omega \setminus \{[0^\omega], [1^\omega], [10^\omega], [01^\omega]\}\),
- \(\mathcal{X}(0) \setminus \{[1^\omega], [01^\omega]\}\),
- \(\mathcal{X}(1) \setminus \{[0^\omega], [10^\omega]\}\).
Geometries of strings accepted by \mathcal{M}

Theorem

Any atlas $[L]$ defined by a Büchi recognisable language L is a union from the following list of atlases:

- $\{(01)^\omega\}$, $\{1^\omega\}$, $\{0^\omega\}$, $\{01^\omega\}$, $\{10^\omega\}$,
- $\sum_{QI}^\omega \setminus \{[0^\omega], [1^\omega], [10^\omega], [01^\omega]\}$,
- $\mathcal{X}(0) \setminus \{[1^\omega], [01^\omega]\}$,
- $\mathcal{X}(1) \setminus \{[0^\omega], [10^\omega]\}$.

31 / 44
Theorem

Any atlas \([L]\) defined by a Büchi recognisable language \(L\) is a union from the following list of atlases:

- \([\{(01)\omega\}]\), \([\{1\omega\}]\), \([\{0\omega\}]\), \([\{01\omega\}]\), \([\{10\omega\}]\),
- \(\sum_{QI}^\omega \setminus \{[0\omega], [1\omega], [10\omega], [01\omega]\}\),
- \(\mathcal{X}(0) \setminus \{[1\omega], [01\omega]\}\),
- \(\mathcal{X}(1) \setminus \{[0\omega], [10\omega]\}\).
Theorem

Any atlas $[L]$ defined by a Büchi recognisable language L is a union from the following list of atlases:

- $\{(01)^\omega\}$, $\{1^\omega\}$, $\{0^\omega\}$, $\{01^\omega\}$, $\{10^\omega\}$,
- $\Sigma^\omega_{QI} \setminus \{[0^\omega], [1^\omega], [10^\omega], [01^\omega]\}$,
- $\mathcal{X}(0) \setminus \{[1^\omega], [01^\omega]\}$,
- $\mathcal{X}(1) \setminus \{[0^\omega], [10^\omega]\}$.
Call a loop of a Büchi automaton a 0-loop if only 0 is read through the loop. Define 1-loops and 01-loops in a similar way. Then all Büchi automata are categorized by the following features:

- if it has a 0-loop, 1-loop, and 01-loop or not; and
- how these loops are connected.

For example,

- if it has 0-loop and 1-loop, the initial state is in 0-loop and can move from one loop to another, then the automaton accepts $\Sigma_{Q_I}^\omega \setminus [1^\omega]$.
- If it has 0-loop and 01-loop, the initial state is in 0-loop and can move from one loop to another, then the automaton accepts $\mathcal{X}(1)$.
Corollary

There exists an algorithm that, given Büchi automata A and B, decides if the atlases $[L(A)]$ and $[L(B)]$ coincide. Furthermore, the algorithm runs in linear time on the size of the input automata.

In contrast, the problem of deciding whether two given Büchi automata represent the same language is PSPACE-complete.
Introduction: Quasi-isometry between colored metric spaces

Structure of \leq_{QI}
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.

Problems on \leq_{QI}
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones
Problem and our result

The quasi-isometry problem consists of determining if given two strings α and β are quasi-isometric. Formally, the quasi-isometry problem (over the alphabet Σ) is identified as the set:

$$QIP = \{(\alpha, \beta) \mid \alpha, \beta \in \Sigma^\omega \& [\alpha] = [\beta]\}.$$

Theorem

The following statements are true:

1. Given quasi-isometric strings α and β, there exists a quasi-isometry between α and β computable in the halting set relative to α and β.

2. The quasi-isometry problem between computable strings, that is the following set $QIP = \{(\alpha, \beta) \mid \alpha, \beta \in \Sigma^\omega, [\alpha] = [\beta], \alpha \text{ and } \beta \text{ are computable}\}$ is a complete Σ^0_2-set.

Problem

Given quasi-isometric strings α and β, does there exist a computable quasi-isometry between them?
● Introduction: Quasi-isometry between colored metric spaces

● Structure of \leq_{QI}
 ● Lemmas: small cross-over, decomposition, reduction
 ● Structure theorems: infinite chain, infinite antichain, density, etc.

● Problems on \leq_{QI}
 ● Büchi automata and large scale geometries
 ● Complexity of the quasi-isometry problem
 ● Asymptotic cones
Let $\alpha \in \Sigma^\omega$ be a coloured metric space.

- We call $s : \omega \to \omega$ a scaling factor if it is strictly monotonic and $s(0) = 1$.
- Let $d_n(i, j) = |i - j|/s(n)$.

We define the following sequence of metric spaces:

$$X_{0,\alpha} = (\alpha, d_0), \ X_{1,\alpha} = (\alpha, d_1), \ldots, X_{n,\alpha} = (\alpha, d_n), \ldots$$

We want to define a “limit” of this sequence in a formal way to treat the large scale geometry of α. We adopt the notion of asymptotic cone to do that.
Let $\mathcal{F} \subset P(\omega)$ be a non-principal ultrafilter.

- Let $a = (a_n)_{n \geq 0}$ be a sequence, where $a_n \in X_{n,\alpha}$.
- a is \mathcal{F}-bounded if $\{n \mid d_n(0, a_n) < L\} \in \mathcal{F}$ for some L.
- Let $\mathcal{B}(\mathcal{F}, s)$ be the set of all bounded sequences $a = (a_n)_{n \geq 0}$.
- $a, b \in \mathcal{B}(\mathcal{F}, s)$ is said to be \mathcal{F}-equivalent ($a \sim_\mathcal{F} c$) if

$$\forall \epsilon > 0 \{n \mid d_n(a_n, b_n) \leq \epsilon\} \in \mathcal{F}.$$
Definition

For given sequence α, scaling function s and ultrafilter \mathcal{F}, the asymptotic cone of α, written $\text{Cone}(\alpha, \mathcal{F}, s)$, with respect to the scaling function $s(n)$ and the ultra-filter \mathcal{F} is the factor set

$$
\mathcal{B}(\mathcal{F}, s)/ \sim_{\mathcal{F}}
$$

equipped with the following metric D and colour C:

1. $D(a, b) = r$ if and only if for every ϵ the set
 $$
 \{n \mid r - \epsilon \leq d_n(a_n, b_n) \leq r + \epsilon \}
 $$
 belongs to \mathcal{F}.

2. $C(a) = \sigma$ if and only if the set
 $$
 \{n \mid a_n \text{ has colour } \sigma \}
 $$
 belongs to \mathcal{F}.

The following theorems are coloured variant of a known results in geometric group theory, which says the set of all asymptotic cones modulo quasi-isometry is "simpler" than Σ_{QI}^ω.

Theorem

If strings α and β are quasi-isometric then the following holds for the asymptotic cones $\text{Cone}(\alpha, \mathcal{F}, s)$ and $\text{Cone}(\beta, \mathcal{F}, s)$.

1. They are bi-Lipschitz equivalent; i.e. they are quasi-isometric with the additive constant $B = 0$.

2. The bi-Lipschitz map above can be taken as a order preserving map.

Theorem

There are two non-quasi-isometric strings $\alpha, \beta \in \{0, 1\}^\omega$, a scale factor $s(n)$, and filter \mathcal{F} such that the cones $\text{Cone}(\alpha, \mathcal{F}, s)$ and $\text{Cone}(\beta, \mathcal{F}, s)$ coincide.
Theorem

If α is Martin-Löf random, then for all computable scaling factors s and ultra-filters \mathcal{F}, the asymptotic cone $\text{Cone}(\alpha, \mathcal{F}, s)$ coincides with the space $(\mathcal{R}_{\geq 0}; d, C)$, where all reals have all colours from alphabet Σ.
Future work

- Open problems
 - Cardinality of the set of minimal elements
 - Existence of computable QI-map for computable sequences
 - There are some more...

- Degree theory for \leq_{QI} (ongoing w/ F. Stephan, S. Jain)