Large Scale Geometries of Infinite Strings

Toru Takisaka
National Institute of Informatics, Japan

June 18, 2019

Outline

- Introduction: Quasi-isometry between colored metric spaces
- Structure of $\leq_{Q I}$
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on $\leq_{Q I}$
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones

This talk is based on the following papers:

- Bakh Khoussainov, Toru Takisaka: Large Scale Geometries of Infinite Strings. Proc. LICS 2017.
- Bakh Khoussainov, Toru Takisaka: Infinite Strings and Their Large Scale Properties. Submitted.

The slide is available at my webpage

- http://group-mmm.org/~toru/

Quasi-isometries

Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be metric spaces.

Definition

A map $f: M_{1} \rightarrow M_{2}$ is an (A, B, C)-quasi-isometry, where $A \geq 1$, $B \geq 0$ and $C \geq 0$, if for all $x, y \in M_{1}$ we have

$$
(1 / A) \cdot d_{1}(x, y)-B \leq d_{2}(f(x), f(y)) \leq A \cdot d_{1}(x, y)+B
$$

and for all $y \in M_{2}$ there is an $x \in M_{1}$ such that $d_{2}(y, f(x)) \leq C$.
When $B=0$, the mapping is bi-Lipshitz. Thus, a quasi-isometry is a bi-Lipschitz map with a distortion.

Examples

Definition

A map $f: M_{1} \rightarrow M_{2}$ is an (A, B, C)-quasi-isometry, where $A \geq 1$, $B \geq 0$ and $C \geq 0$, if for all $x, y \in M_{1}$ we have

$$
(1 / A) \cdot d_{1}(x, y)-B \leq d_{2}(f(x), f(y)) \leq A \cdot d_{1}(x, y)+B
$$

and for all $y \in M_{2}$ there is an $x \in M_{1}$ such that $d_{2}(y, f(x)) \leq C$.

Example

\mathbb{R} and \mathbb{Z} are quasi-isometric.

- The function $f(n)=n$ is a $(1,0,1)$-quasi-isometry from \mathbb{Z} to \mathbb{R}.
- The function $g(x)=\lceil x\rceil$ is a $(1,1,0)$-quasi-isometry from \mathbb{R} to \mathbb{Z}.

Examples

Definition

A map $f: M_{1} \rightarrow M_{2}$ is an (A, B, C)-quasi-isometry, where $A \geq 1$, $B \geq 0$ and $C \geq 0$, if for all $x, y \in M_{1}$ we have

$$
(1 / A) \cdot d_{1}(x, y)-B \leq d_{2}(f(x), f(y)) \leq A \cdot d_{1}(x, y)+B,
$$

and for all $y \in M_{2}$ there is an $x \in M_{1}$ such that $d_{2}(y, f(x)) \leq C$.

Example

Let G be a finitely generated group, and S and S^{\prime} be its generators. Then the Cayley graphs of G based on S and S^{\prime} are quasi-isometric.

Proof sketch: if $|g|_{S}=n$, then $|g|_{S^{\prime}} \leq M n$, where $M=\max _{s \in S}|s|_{S^{\prime}}$.
Thus the identity map on G is a quasi-isometry.

Why do we need quasi-isometries

The notion has been proposed by Gromov for the study of geometric group theory.
Studying quasi-isometry (QI) invariants of groups turned out to be crucial in solving many important problems. Hence, finding QI-invariants is an important theme in geometric group theory. Here are examples of QI-invariants:
(1) virtually nilpotent,
(2) virtually free,
(3) hyperbolic,
(3) having polynomial growth rate,
(3) Finite presentability,
(6) Having decidable word problem,
(1) Asymptotic cones, etc.

Infinite strings as coloured metric spaces

A coloured metric space is a tuple $\mathcal{M}=(M ; d, C)$, where (M, d) is the metric space, and C is a colour function $C: M \rightarrow \Sigma$. If $\sigma=C(m)$ then m has colour σ.

Example

Consdier Σ^{ω}, the set of infinite strings over Σ. Each $\alpha \in \Sigma^{\omega}$ is a coloured metric space.

Definition

Let $\mathcal{M}_{1}=\left(M_{1} ; d_{1}, C_{1}\right)$ and $\mathcal{M}_{2}=\left(M_{2} ; d_{2}, C_{2}\right)$ be coloured metric spaces. A colour preserving (A, B, C)-quasi-isometry from $\left(M_{1} ; d_{1}\right)$ into $\left(M_{2} ; d_{2}\right)$ is a (A, B, C)-quasi-isometry from \mathcal{M}_{1} into \mathcal{M}_{2}.

If there exists such a function from \mathcal{M}_{1} to \mathcal{M}_{2}, then we write $\mathcal{M}_{1} \leq_{Q I} \mathcal{M}_{2}$.

8 / 44

The relation $\leq_{Q I}$

Example

$0^{\omega} \leq_{Q I}(01)^{\omega}$ holds. The converse does not hold.

- Define a function $f: 0^{\omega} \rightarrow(01)^{\omega}$ by $f(2 n)=f(2 n+1)=2 n$.
- There is no colour-preserving function from $(01)^{\omega}$ to 0^{ω}.

Example
 $01001 \ldots 0^{n} 1 \ldots \leq_{Q I}(01)^{\omega}$ holds. The converse does not hold.

Large scale geometries

Definition

The equivalence classes of $\sim_{Q I}$ are the quasi-isometry types or the large scale geometries of α. Set $\Sigma_{Q I}^{\omega}=\Sigma^{\omega} / \sim_{Q I}$. Denote by $[\alpha]$ the large scale geometry of α.

Example

The QI type $\left[(01)^{\omega}\right]$ is the set of all binary strings such that, for some constant M, any of its subsequence of the length M contains 0 and 1 .

From now on, every coloured metric space that appear in the talk is an infinite string, which is denoted by $\alpha, \beta, \gamma, \ldots$

- Introduction: Quasi-isometry between colored metric spaces
- Structure of $\leq_{Q I}$
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on $\leq_{Q I}$
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones

Small Cross-Over Lemma

Lemma (Small Cross Over Lemma)

For any given quasi-isometry constants (A, B, C) there are constants $D \leq 0$ and $D^{\prime} \leq 0$ such that for all quasi-isometry maps $g: \alpha \rightarrow \beta$ we have the following:
(1) For all $n, m \in \omega$ if $n<m$ and $g(m)<g(n)$ we have

$$
g(m)-g(n) \geq D
$$

(2) For all $n, m \in \omega$ if $n<m$ and $g(m)<g(n)$ then $n-m \geq D^{\prime}$.

Proof idea:

Decomposition Lemma

Lemma (Decomposition Lemma)

There exists a procedure that given (A, B, C)-quasi-isometry $f: \alpha \rightarrow \beta$ produces a decompositon of f into quasi-isometries $\alpha \xrightarrow{f_{1}} \gamma_{1} \xrightarrow{f_{2}} \gamma_{2} \xrightarrow{f_{3}} \beta$ such that each of the following holds:
(1) f_{1} is a bijection, f_{2} is a monotonic injection, and f_{3} is a monotonic surjection.
(2) f_{1} is a monotonic injection, f_{2} is a bijection, and f_{3} is a monotonic surjection.
(3) f_{1} is a bijection, f_{2} is a monotonic surjection, and f_{3} is a monotonic injection.

Componentwise reducibility

Definition

Say α is component-wise reducible to β, written $\alpha \leq_{C R} \beta$, if we can partition α and β as

$$
\alpha=u_{1} u_{2} \ldots \text { and } \beta=v_{1} v_{2} \ldots
$$

such that $C l\left(u_{i}\right) \subseteq C l\left(v_{i}\right)$ for all i and $\left|u_{j}\right|,\left|v_{j}\right|$ are uniformly bounded by a constant C. Call these presentations of α and β witnessing partitions and intervals u_{i} and v_{i} partitioning intervals.

Theorem

$\alpha \leq_{Q I} \beta$ implies $\alpha \leq_{C R} \beta$.

Proof idea

If the QI map is monotonic, then the proof is easy. It is not in the non-monotonic case.
We use a refined version of decomposition theorem and show a transitivity-like lemma.
A function of the following form is called an atomic crossing map:

Proof idea

Lemma

Any bijective quasi-isometry can be decomposed into finite number of atomic crossing maps, each of which are also quasi-isometry.

Lemma

Suppose $\alpha \leq_{Q I} \beta$ via an atomic crossing map $f: \alpha \rightarrow \beta$ and $\beta \leq_{C R} \gamma$. Then $\alpha \leq_{C R} \gamma$.
$\left(\alpha \leq_{Q I} \beta\right.$ implies $\alpha \leq_{C R} \beta$.) Decompose the QI map into $\alpha \xrightarrow{f_{1}} \gamma \xrightarrow{f_{2}} \beta$, where f_{1} is bijective and f_{2} is monotonic. Then apply the lemma above iteratively.

- Introduction: Quasi-isometry between colored metric spaces
- Structure of $\leq_{Q I}$
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on $\leq_{Q I}$
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones

Notations

- From now on we assume $\Sigma=\{0,1\}$.
- For $\alpha=0^{n_{0}} 1^{m_{0}} 0^{n_{1}} 1^{m_{1}} \ldots \in\{0,1\}^{\omega}\left(n_{i}, m_{i} \geq 1\right)$, we call $0^{n_{i}}$ and $1^{m_{i}}$ the 0 -blocks and 1 -blocks, respectively.

0 -blocks
 $01001100001111 \ldots$

- An infinite succession of $\sigma \in \Sigma$ is also called a σ-block.

0-block
$111100000000 \ldots$

Global nature of $\Sigma_{Q I}^{\omega}$

We split the set $\Sigma_{Q I}^{\omega}$ into four subsets:

- $\mathcal{X}(0)=\{[\alpha] \mid$ in α all the lengths of 0-blocks are universally bounded $\}$,
- $\mathcal{X}(1)=\{[\alpha] \mid$ in α the lengths of all 1-blocks are universally bounded $\}$,
- $\mathcal{X}(u)=\{[\alpha] \mid$ in α the lengths of both 0 -blocks and 1-blocks are unbounded\},
- $\mathcal{X}(b)=\{[\alpha] \mid$ in α the lengths of both 0 -blocks and 1-blocks are universally bounded $\}$.

Theorem

The sets $\mathcal{X}(0), \mathcal{X}(1), \mathcal{X}(u), \mathcal{X}(b)$ have the following properties:
(1) The sets $\mathcal{X}(0)$ and $\mathcal{X}(1)$ are filters.
(2) The set $\mathcal{X}(u)$ is an ideal.
(3) The set $\mathcal{X}(b)$ is the singleton $\left\{\left[(01)^{\omega}\right]\right\}$.

Structure theorems

- The set $\mathcal{X}(b)$ is the singleton $\left\{\left[(01)^{\omega}\right]\right\}$, and is the greatest element.
- The sets $\mathcal{X}(0)$ and $\mathcal{X}(1)$ are filters.
- The set $\mathcal{X}(u)$ is an ideal.
- $\left[0^{\omega}\right]$ and $\left[1^{\omega}\right]$ are minimal.

Structure theorems

- $\mathcal{X}(0), \mathcal{X}(1)$ and $\mathcal{X}(u)$ contain chains $\left(\alpha_{n}\right)_{n \in \mathbb{Z}}$ of the type of integers, that is $\forall n \in \mathbb{Z}\left[\alpha_{n}<_{Q I} \alpha_{n+1}\right]$.

Proof:

$$
\begin{gathered}
\alpha_{1}=0101001001 \ldots 0^{2^{n}} 10^{2^{n}} 1 \ldots \\
\alpha_{0}=01001 \ldots 0^{2^{n}} 1 \ldots \\
\alpha_{-1}=0100001 \ldots 0^{4^{n}} 1 \ldots
\end{gathered}
$$

Structure theorems

- $\mathcal{X}(0), \mathcal{X}(1)$ and $\mathcal{X}(u)$ have countable antichains.

Proof:

24 / 44

Structure theorems

- $\Sigma_{Q I}^{\omega}$ possesses infinitely many minimal elements.

Proof. For any unbounded nondecreasing sequence $\left\{a_{n}\right\}_{n \in \omega}$, the following sequence is minimal:

$$
\alpha=0^{a_{0}} 1^{a_{1}} 0^{a_{2}} 1^{a_{3}} \ldots 0^{a_{2 k}} 1^{a_{2 k+1}} \ldots
$$

$\mathcal{X}(1)$

Problem

Are there uncountably many minimal elements?
$25 / 44$

Density

Theorem (Density Theorem)

Let $\alpha, \beta \in \Sigma^{\omega}$ be given. Assume $\alpha<_{Q I} \beta$, and every letter in α or β occurs in both α and β infinitely many often. Then there exists $\gamma \in \Sigma^{\omega}$ such that $\alpha<_{Q I} \gamma<_{Q I} \beta$.
Morever, there are infinitely many γ 's that satisfy this inequality, and not quasi-isometric each other.

Least upper bound

Some naive definitions turn out to be not well-defined (i.e. there are $\alpha \sim_{Q I} \alpha^{\prime}$ and $\beta \sim_{Q I} \beta^{\prime}$ such that $[\alpha \wedge \beta] \neq\left[\alpha^{\prime} \wedge \beta^{\prime}\right]$).

- $\alpha \wedge \beta=\alpha(0) \beta(0) \alpha(1) \beta(1) \ldots$
- $\alpha \wedge \beta=\alpha$ XOR β

Theorem (Stephan+, personal communication)
There are strings α and β for which no least upper bound exist.

- Introduction: Quasi-isometry between colored metric spaces
- Structure of $\leq_{Q I}$
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on $\leq_{Q I}$
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones

Atlas

Definition

An atlas is a set of quasi-isometry types. In particular, the atlas defined by the language L is the set $[L]=\{[\alpha] \mid \alpha \in L\}$, where $[\alpha]$ is the quasi-isometry type of α.

Definition

A Büchi automaton \mathcal{M} is a quadruple (S, ι, Δ, F), where S is a finite set of states, $\iota \in S$ is the initial state, $\Delta \subset S \times \Sigma \times S$ is the transition table, and $F \subseteq S$ is the set of accepting states.

Geometries of strings accepted by \mathcal{M}

Theorem

Any atlas $[L]$ defined by a Büchi recognisable language L is a union from the following list of atlases:

- [\{(01) $\left.\left.)^{\omega}\right\}\right],\left[\left\{1^{\omega}\right\}\right],\left[\left\{0^{\omega}\right\}\right], \quad\left[\left\{01^{\omega}\right\}\right]$, [\{10 $\left.\left.{ }^{\omega}\right\}\right]$,
- $\Sigma_{Q I}^{\omega} \backslash\left\{\left[0^{\omega}\right],\left[1^{\omega}\right],\left[10^{\omega}\right],\left[01^{\omega}\right]\right\}$,

- $\mathcal{X}(0) \backslash\left\{\left[1^{\omega}\right],\left[01^{\omega}\right]\right\}$,
- $\mathcal{X}(1) \backslash\left\{\left[0^{\omega}\right],\left[10^{\omega}\right]\right\}$.

Geometries of strings accepted by \mathcal{M}

Theorem

Any atlas $[L]$ defined by a Büchi recognisable language L is a union from the following list of atlases:

- $\left[\left\{(01)^{\omega}\right\}\right],\left[\left\{1^{\omega}\right\}\right],\left[\left\{0^{\omega}\right\}\right],\left[\left\{01^{\omega}\right\}\right]$, [\{10 $\left.\left.{ }^{\omega}\right\}\right]$,

- $\Sigma_{Q I}^{\omega} \backslash\left\{\left[0^{\omega}\right],\left[1^{\omega}\right],\left[10^{\omega}\right],\left[01^{\omega}\right]\right\}$,
- $\mathcal{X}(0) \backslash\left\{\left[1^{\omega}\right],\left[01^{\omega}\right]\right\}$,
- $\mathcal{X}(1) \backslash\left\{\left[0^{\omega}\right],\left[10^{\omega}\right]\right\}$.

Geometries of strings accepted by \mathcal{M}

Theorem

Any atlas $[L]$ defined by a Büchi recognisable language L is a union from the following list of atlases:

- [\{(01) $\left.\left.)^{\omega}\right\}\right],\left[\left\{1^{\omega}\right\}\right],\left[\left\{0^{\omega}\right\}\right],\left[\left\{01^{\omega}\right\}\right]$, [\{10 $\left.\left.{ }^{\omega}\right\}\right]$,
- $\Sigma_{Q I}^{\omega} \backslash\left\{\left[0^{\omega}\right],\left[1^{\omega}\right],\left[10^{\omega}\right],\left[01^{\omega}\right]\right\}$,

- $\mathcal{X}(0) \backslash\left\{\left[1^{\omega}\right],\left[01^{\omega}\right]\right\}$,
- $\mathcal{X}(1) \backslash\left\{\left[0^{\omega}\right],\left[10^{\omega}\right]\right\}$.

Geometries of strings accepted by \mathcal{M}

Theorem

Any atlas $[L]$ defined by a Büchi recognisable language L is a union from the following list of atlases:

- $\left[\left\{(01)^{\omega}\right\}\right],\left[\left\{1^{\omega}\right\}\right],\left[\left\{0^{\omega}\right\}\right],\left[\left\{01^{\omega}\right\}\right]$, [\{10 $\left.\left.{ }^{\omega}\right\}\right]$,
- $\Sigma_{Q I}^{\omega} \backslash\left\{\left[0^{\omega}\right],\left[1^{\omega}\right],\left[10^{\omega}\right],\left[01^{\omega}\right]\right\}$,

- $\mathcal{X}(0) \backslash\left\{\left[1^{\omega}\right],\left[01^{\omega}\right]\right\}$,
- $\mathcal{X}(1) \backslash\left\{\left[0^{\omega}\right],\left[10^{\omega}\right]\right\}$.

Proof idea

Call a loop of a Büchi automaton a 0 -loop if only 0 is read through the loop. Define 1-loops and 01-loops in a similar way.
Then all Büchi automata are categorized by the following features:

- if it has a 0-loop, 1-loop, and 01-loop or not; and
- how these loops are connected.

For example,

- if it has 0-loop and 1-loop, the initial state is in 0-loop and can move from one loop to another, then the automaton accepts $\Sigma_{Q I}^{\omega} \backslash\left[1^{\omega}\right]$.
- If it has 0-loop and 01-loop, the initial state is in 0-loop and can move from one loop to another, then the automaton accepts $\mathcal{X}(1)$.

Decidability result

Corollary

There exists an algorithm that, given Büchi automata \mathcal{A} and \mathcal{B}, decides if the atlases $[L(\mathcal{A})]$ and $[L(\mathcal{B})]$ coincide. Furthermore, the algorithm runs in linear time on the size of the input automata.

In contrast, the problem of deciding whether two given Büchi automata represent the same language is PSPACE-complete.

- Introduction: Quasi-isometry between colored metric spaces
- Structure of $\leq_{Q I}$
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on $\leq_{Q I}$
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones

Problem and our result

The quasi-isometry problem consists of determining if given two strings α and β are quasi-isometric. Formally, the quasi-isometry problem (over the alphabet Σ) is identified as the set:

$$
Q I P=\left\{(\alpha, \beta) \mid \alpha, \beta \in \Sigma^{\omega} \&[\alpha]=[\beta]\right\} .
$$

Theorem

The following statements are true:
(1) Given quasi-isometric strings α and β, there exists a quasi-isometry between α and β computable in the halting set relative to α and β.
(2) The quasi-isometry problem between computable strings, that is the following set $Q I P=\left\{(\alpha, \beta) \mid \alpha, \beta \in \Sigma^{\omega},[\alpha]=[\beta], \alpha\right.$ and β are computable\} is a complete Σ_{2}^{0}-set.

Problem

Given quasi-isometric strings α and β, does there exist a computable quasi-isometry between them?

- Introduction: Quasi-isometry between colored metric spaces
- Structure of $\leq_{Q I}$
- Lemmas: small cross-over, decomposition, reduction
- Structure theorems: infinite chain, infinite antichain, density, etc.
- Problems on $\leq_{Q I}$
- Büchi automata and large scale geometries
- Complexity of the quasi-isometry problem
- Asymptotic cones

Basic setting

- Let $\alpha \in \Sigma^{\omega}$ be a coloured metric space.
- We call $s: \omega \rightarrow \omega$ a scaling factor if it is strictly monotonic and $s(0)=1$.
- Let $d_{n}(i, j)=|i-j| / s(n)$.

We define the following sequence of metric spaces:

$$
X_{0, \alpha}=\left(\alpha, d_{0}\right), X_{1, \alpha}=\left(\alpha, d_{1}\right), \ldots, X_{n, \alpha}=\left(\alpha, d_{n}\right), \ldots
$$

We want to define a "limit" of this sequence in a formal way to treat the large scale geometry of α. We adopt the notion of asymptotic cone to do that.

The set $\mathbf{B}(\mathcal{F}, s)$ and an equiv. rel. on it

- Let $\mathcal{F} \subset P(\omega)$ be a non-principal ultrafilter.
- Let $\mathbf{a}=\left(a_{n}\right)_{n \geq 0}$ be a sequence, where $a_{n} \in X_{n, \alpha}$.
- a is \mathcal{F}-bounded if $\left\{n \mid d_{n}\left(0, a_{n}\right)<L\right\} \in \mathcal{F}$ for some L.
- Let $\mathbf{B}(\mathcal{F}, s)$ be the set of all bounded sequences $\mathbf{a}=\left(a_{n}\right)_{n \geq 0}$.
- a, $\mathbf{b} \in \mathbf{B}(\mathcal{F}, s)$ is said to be \mathcal{F}-equivalent $\left(\mathbf{a} \sim_{\mathcal{F}} \mathbf{c}\right)$ if

$$
\forall \epsilon>0\left[\left\{n \mid d_{n}\left(a_{n}, b_{n}\right) \leq \epsilon\right\} \in \mathcal{F}\right] .
$$

Asymptotic cone

Definition

For given sequence α, scaling function s and ultrafilter \mathcal{F}, the asymptotic cone of α, written Cone (α, \mathcal{F}, s), with respect to the scaling function $s(n)$ and the ultra-filter \mathcal{F} is the factor set

$$
\mathbf{B}(\mathcal{F}, s) / \sim_{\mathcal{F}}
$$

equipped with the following metric D and colour C :
(1) $D(\mathbf{a}, \mathbf{b})=r$ if and only if for every ϵ the set
$\left\{n \mid r-\epsilon \leq d_{n}\left(a_{n}, b_{n}\right) \leq r+\epsilon\right\}$ belong to \mathcal{F}.
(2) $C(\mathbf{a})=\sigma$ if and only if the set $\left\{n \mid a_{n}\right.$ has colour $\left.\sigma\right\}$ belongs to \mathcal{F}.

Results

The following theorems are coloured variant of a known results in geometric group theory, which says the set of all asymptotic cones modulo quasi-isometry is "simpler" than $\Sigma_{Q I}^{\omega}$.

Theorem

If strings α and β are quasi-isometric then the following holds for the asymptotic cones $\operatorname{Cone}(\alpha, \mathcal{F}, s)$ and $\operatorname{Cone}(\beta, \mathcal{F}, s)$.
(1) They are bi-Lipschitz equivalent; i.e. they are quasi-isometric with the additive constant $B=0$.
(2) The bi-Lipscitz map above can be taken as a order preserving map.

Theorem

There are two non-quasi-isometric strings $\alpha, \beta \in\{0,1\}^{\omega}$, a scale factor $s(n)$, and filter \mathcal{F} such that the cones Cone (α, \mathcal{F}, s) and $\operatorname{Cone}(\beta, \mathcal{F}, s)$ coincide.

Results

Theorem

If α is Martin-Löf random, then for all computable scaling factors s and ultra-filters \mathcal{F}, the asymptotic cone Cone (α, \mathcal{F}, s) coincides with the space $\left(\mathcal{R}_{\geq 0} ; d, C\right)$, where all reals have all colours from alphabet Σ.

Future work

- Open problems
- Cardinality of the set of minimal elements
- Existence of computable QI-map for computable sequences
- There are some more...
- Degree theory for $\leq_{Q I}$ (ongoing w/ F. Stephan, S. Jain)

