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This talk is based on the following papers:
Bakh Khoussainov, Toru Takisaka: Large Scale Geometries of Infinite
Strings. Proc. LICS 2017.
Bakh Khoussainov, Toru Takisaka: Infinite Strings and Their Large
Scale Properties. Submitted.

The slide is available at my webpage
http://group-mmm.org/˜toru/
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Quasi-isometries

Let (M1, d1) and (M2, d2) be metric spaces.

Definition
A map f : M1 →M2 is an (A,B,C)−quasi-isometry, where A ≥ 1,
B ≥ 0 and C ≥ 0, if for all x, y ∈M1 we have

(1/A) · d1(x, y)−B ≤ d2(f(x), f(y)) ≤ A · d1(x, y) +B,

and for all y ∈M2 there is an x ∈M1 such that d2(y, f(x)) ≤ C.

When B = 0, the mapping is bi-Lipshitz. Thus, a quasi-isometry is a
bi-Lipschitz map with a distortion.
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Examples

Definition
A map f : M1 →M2 is an (A,B,C)−quasi-isometry, where A ≥ 1,
B ≥ 0 and C ≥ 0, if for all x, y ∈M1 we have

(1/A) · d1(x, y)−B ≤ d2(f(x), f(y)) ≤ A · d1(x, y) +B,

and for all y ∈M2 there is an x ∈M1 such that d2(y, f(x)) ≤ C.

Example
R and Z are quasi-isometric.

The function f(n) = n is a (1, 0, 1)−quasi-isometry from Z to R.
The function g(x) = dxe is a (1, 1, 0)−quasi-isometry from R to Z.
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Examples

Definition
A map f : M1 →M2 is an (A,B,C)−quasi-isometry, where A ≥ 1,
B ≥ 0 and C ≥ 0, if for all x, y ∈M1 we have

(1/A) · d1(x, y)−B ≤ d2(f(x), f(y)) ≤ A · d1(x, y) +B,

and for all y ∈M2 there is an x ∈M1 such that d2(y, f(x)) ≤ C.

Example
Let G be a finitely generated group, and S and S′ be its generators. Then
the Cayley graphs of G based on S and S′ are quasi-isometric.

Proof sketch: if |g|S = n, then |g|S′ ≤Mn, where M = maxs∈S |s|S′ .
Thus the identity map on G is a quasi-isometry.
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Why do we need quasi-isometries

The notion has been proposed by Gromov for the study of geometric group
theory.
Studying quasi-isometry (QI) invariants of groups turned out to be crucial
in solving many important problems. Hence, finding QI-invariants is an
important theme in geometric group theory. Here are examples of
QI-invariants:

1 virtually nilpotent,
2 virtually free,
3 hyperbolic,
4 having polynomial growth rate,
5 Finite presentability,
6 Having decidable word problem,
7 Asymptotic cones, etc.
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Infinite strings as coloured metric spaces

A coloured metric space is a tupleM = (M ; d,C), where (M,d) is the
metric space, and C is a colour function C : M → Σ. If σ = C(m) then m
has colour σ.

Example
Consdier Σω, the set of infinite strings over Σ. Each α ∈ Σω is a coloured
metric space.

Definition
LetM1 = (M1; d1, C1) andM2 = (M2; d2, C2) be coloured metric
spaces. A colour preserving (A,B,C)−quasi-isometry from (M1; d1) into
(M2; d2) is a (A,B,C)−quasi-isometry fromM1 intoM2.

If there exists such a function fromM1 toM2, then we write
M1 ≤QI M2.
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The relation ≤QI

Example
0ω ≤QI (01)ω holds. The converse does not hold.

Define a function f : 0ω → (01)ω by f(2n) = f(2n+ 1) = 2n.
There is no colour-preserving function from (01)ω to 0ω.

Example
01001 . . . 0n1 . . . ≤QI (01)ω holds. The converse does not hold.
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Large scale geometries

Definition

The equivalence classes of ∼QI are the quasi-isometry types or the large
scale geometries of α. Set Σω

QI = Σω/ ∼QI . Denote by [α] the large
scale geometry of α.

Example
The QI type [(01)ω] is the set of all binary strings such that, for some
constant M , any of its subsequence of the length M contains 0 and 1.

From now on, every coloured metric space that appear in the talk is an
infinite string, which is denoted by α, β, γ, ...
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Small Cross-Over Lemma

Lemma (Small Cross Over Lemma)

For any given quasi-isometry constants (A,B,C) there are constants
D ≤ 0 and D′ ≤ 0 such that for all quasi-isometry maps g : α→ β we
have the following:

1 For all n,m ∈ ω if n < m and g(m) < g(n) we have
g(m)− g(n) ≥ D.

2 For all n,m ∈ ω if n < m and g(m) < g(n) then n−m ≥ D′.

Proof idea:

α

β

n m

g(m) g(n)

Figure: Small Cross Over Lemma.
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Decomposition Lemma

Lemma (Decomposition Lemma)

There exists a procedure that given (A,B,C)−quasi-isometry f : α→ β

produces a decompositon of f into quasi-isometries α
f1−→ γ1

f2−→ γ2
f3−→ β

such that each of the following holds:

1 f1 is a bijection, f2 is a monotonic injection, and f3 is a monotonic
surjection.

2 f1 is a monotonic injection, f2 is a bijection, and f3 is a monotonic
surjection.

3 f1 is a bijection, f2 is a monotonic surjection, and f3 is a monotonic
injection.
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Proof: decomposition into injection and mono surjection

0 0 1 1 2 2 . . .

1 2 0 0 0 0 . . .

0 0 1 1 2 2 . . .

1 1 2 2 0 0 . . .

1 2 0 0 0 0 . . .
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Proof: injection → mono injection and bijection

2 1 1 0 1 1 . . .

0 1 1 1 2 2 . . .

2 1 1 0 1 1 . . .

2 1 1 1 0 2 . . .

0 1 1 1 2 2 . . .
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Componentwise reducibility

Definition
Say α is component-wise reducible to β, written α ≤CR β, if we can
partition α and β as

α = u1u2 . . . and β = v1v2 . . .

such that Cl(ui) ⊆ Cl(vi) for all i and |uj |, |vj | are uniformly bounded by
a constant C. Call these presentations of α and β witnessing partitions
and intervals ui and vi partitioning intervals.

Theorem

α ≤QI β implies α ≤CR β.
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Proof idea

If the QI map is monotonic, then the proof is easy. It is not in the
non-monotonic case.
We use a refined version of decomposition theorem and show a
transitivity-like lemma.
A function of the following form is called an atomic crossing map:

2 1 1 1 0 2 . . .

0 1 1 1 2 2 . . .
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Proof idea

Lemma
Any bijective quasi-isometry can be decomposed into finite number of
atomic crossing maps, each of which are also quasi-isometry.

Lemma
Suppose α ≤QI β via an atomic crossing map f : α→ β and β ≤CR γ.
Then α ≤CR γ.

(α ≤QI β implies α ≤CR β.) Decompose the QI map into α
f1−→ γ

f2−→ β,
where f1 is bijective and f2 is monotonic. Then apply the lemma above
iteratively.

18 / 44



Introduction: Quasi-isometry between colored metric spaces
Structure of ≤QI

Lemmas: small cross-over, decomposition, reduction
Structure theorems: infinite chain, infinite antichain, density, etc.

Problems on ≤QI
Büchi automata and large scale geometries
Complexity of the quasi-isometry problem
Asymptotic cones

19 / 44



Notations

From now on we assume Σ = {0, 1}.
For α = 0n01m00n11m1 . . . ∈ {0, 1}ω(ni,mi ≥ 1), we call 0ni and 1mi

the 0-blocks and 1-blocks, respectively.

An infinite succession of σ ∈ Σ is also called a σ-block.
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Global nature of Σω
QI

We split the set Σω
QI into four subsets:

X (0) = {[α] | in α all the lengths of 0-blocks are universally bounded},
X (1) = {[α] | in α the lengths of all 1-blocks are universally bounded},
X (u) = {[α] | in α the lengths of both 0-blocks and 1-blocks are
unbounded},
X (b) = {[α] | in α the lengths of both 0-blocks and 1-blocks are
universally bounded}.

Theorem

The sets X (0), X (1), X (u), X (b) have the following properties:
1 The sets X (0) and X (1) are filters.
2 The set X (u) is an ideal.
3 The set X (b) is the singleton {[(01)ω]}.
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Structure theorems

The set X (b) is the singleton {[(01)ω]},
and is the greatest element.
The sets X (0) and X (1) are filters.
The set X (u) is an ideal.
[0ω] and [1ω] are minimal.
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Structure theorems

X (0),X (1) and X (u) contain chains
(αn)n∈Z of the type of integers, that is
∀n ∈ Z[αn <QI αn+1].

Proof:

α1 = 0101001001 . . . 02
n
102

n
1 . . .

α0 = 01001 . . . 02
n
1 . . .

α−1 = 0100001 . . . 04
n
1 . . .
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Structure theorems

X (0),X (1) and X (u) have countable
antichains.

Proof:

βn = 0102
n
12

n
03

n
13

n
...0k

n
1k

n
...
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Structure theorems

Σω
QI possesses infinitely many minimal

elements.

Proof. For any unbounded nondecreasing se-
quence {an}n∈ω, the following sequence is
minimal:

α = 0a01a10a21a3 ...0a2k1a2k+1 . . .

Problem
Are there uncountably many minimal
elements?
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Density

Theorem (Density Theorem)

Let α, β ∈ Σω be given. Assume α <QI β, and every letter in α or β
occurs in both α and β infinitely many often. Then there exists γ ∈ Σω

such that α <QI γ <QI β.
Morever, there are infinitely many γ’s that satisfy this inequality, and not
quasi-isometric each other.
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Least upper bound

Some naive definitions turn out to be not well-defined (i.e. there are
α ∼QI α′ and β ∼QI β′ such that [α ∧ β] 6= [α′ ∧ β′]).

α ∧ β = α(0)β(0)α(1)β(1) . . .

α ∧ β = α XOR β

Theorem (Stephan+, personal communication)
There are strings α and β for which no least upper bound exist.
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Atlas

Definition
An atlas is a set of quasi-isometry types. In particular, the atlas defined by
the language L is the set [L] = {[α] | α ∈ L}, where [α] is the
quasi-isometry type of α.

Definition

A Büchi automatonM is a quadruple (S, ι,∆, F ), where S is a finite set
of states, ι ∈ S is the initial state, ∆ ⊂ S × Σ× S is the transition table,
and F ⊆ S is the set of accepting states.
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Geometries of strings accepted byM

Theorem

Any atlas [L] defined by a Büchi recognisable
language L is a union from the following list of
atlases:

[{(01)ω}], [{1ω}], [{0ω}], [{01ω}],
[{10ω}],
Σω
QI \ {[0ω], [1ω], [10ω], [01ω]},
X (0) \ {[1ω], [01ω]},
X (1) \ {[0ω], [10ω]}.
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Geometries of strings accepted byM

Theorem
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Proof idea

Call a loop of a Büchi automaton a 0-loop if only 0 is read through the
loop. Define 1-loops and 01-loops in a similar way.
Then all Büchi automata are categorized by the following features:

if it has a 0-loop, 1-loop, and 01-loop or not; and
how these loops are connected.

For example,
if it has 0-loop and 1-loop, the initial state is in 0-loop and can move
from one loop to another, then the automaton accepts Σω

QI \ [1ω].
If it has 0-loop and 01-loop, the initial state is in 0-loop and can move
from one loop to another, then the automaton accepts X (1).
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Decidability result

Corollary
There exists an algorithm that, given Büchi automata A and B, decides if
the atlases [L(A)] and [L(B)] coincide. Furthermore, the algorithm runs in
linear time on the size of the input automata.

In contrast, the problem of deciding whether two given Büchi automata
represent the same language is PSPACE-complete.
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Problem and our result

The quasi-isometry problem consists of determining if given two strings α
and β are quasi-isometric. Formally, the quasi-isometry problem (over the
alphabet Σ) is identified as the set:

QIP = {(α, β) | α, β ∈ Σω & [α] = [β]}.

Theorem
The following statements are true:

1 Given quasi-isometric strings α and β, there exists a quasi-isometry
between α and β computable in the halting set relative to α and β.

2 The quasi-isometry problem between computable strings, that is the
following set QIP = {(α, β) | α, β ∈ Σω, [α] = [β], α and β are
computable} is a complete Σ0

2-set.

Problem
Given quasi-isometric strings α and β, does there exist a computable
quasi-isometry between them? 37 / 44
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Basic setting

Let α ∈ Σω be a coloured metric space.
We call s : ω → ω a scaling factor if it is strictly monotonic and
s(0) = 1.
Let dn(i, j) = |i− j|/s(n).

We define the following sequence of metric spaces:

X0,α = (α, d0), X1,α = (α, d1), . . . , Xn,α = (α, dn), . . .

We want to define a “limit” of this sequence in a formal way to treat the
large scale geometry of α. We adopt the notion of asymptotic cone to do
that.
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The set B(F , s) and an equiv. rel. on it

Let F ⊂ P (ω) be a non-principal ultrafilter.
Let a = (an)n≥0 be a sequence, where an ∈ Xn,α.
a is F -bounded if {n | dn(0, an) < L} ∈ F for some L.
Let B(F , s) be the set of all bounded sequences a = (an)n≥0.
a, b ∈ B(F , s) is said to be F-equivalent (a ∼F c) if

∀ε > 0[{n | dn(an, bn) ≤ ε} ∈ F ].
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Asymptotic cone

Definition

For given sequence α, scaling function s and ultrafilter F , the asymptotic
cone of α, written Cone(α,F , s), with respect to the scaling function
s(n) and the ultra-filter F is the factor set

B(F , s)/ ∼F

equipped with the following metric D and colour C:
1 D(a,b) = r if and only if for every ε the set
{n | r − ε ≤ dn(an, bn) ≤ r + ε} belong to F .

2 C(a) = σ if and only if the set {n | an has colour σ} belongs to F .
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Results

The following theorems are coloured variant of a known results in
geometric group theory, which says the set of all asymptotic cones modulo
quasi-isometry is "simpler" than Σω

QI .

Theorem

If strings α and β are quasi-isometric then the following holds for the
asymptotic cones Cone(α,F , s) and Cone(β,F , s).

1 They are bi-Lipschitz equivalent; i.e. they are quasi-isometric with the
additive constant B = 0.

2 The bi-Lipscitz map above can be taken as a order preserving map.

Theorem
There are two non-quasi-isometric strings α, β ∈ {0, 1}ω, a scale factor
s(n), and filter F such that the cones Cone(α,F , s) and Cone(β,F , s)
coincide.
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Results

Theorem

If α is Martin-Löf random, then for all computable scaling factors s and
ultra-filters F , the asymptotic cone Cone(α,F , s) coincides with the space
(R≥0; d,C), where all reals have all colours from alphabet Σ.
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Future work

Open problems
Cardinality of the set of minimal elements
Existence of computable QI-map for computable sequences
There are some more...

Degree theory for ≤QI (ongoing w/ F. Stephan, S. Jain)
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