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Numberings

Let S be a countable set. A numbering v of the set S is a
surjective map from the set of natural numbers N onto S.

Suppose that v is a numbering of a set Sy, and p is a
numbering of a set S7. The numbering v is reducible to p,
denoted by v < p, if there is a total computable function f(z)
such that

v(n) = u(f(n)) for all n € N.
Note the following: if v < u, then Sy C 5.

Numberings v and p are equivalent (denoted by v = p) if
v<pand p<v.
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Computable families

In the talk, we consider only numberings of families S C P(N).

A numbering v is computable if the set

{(n,a): z € v(n)}
is computably enumerable.

A family S € P(N) is computable if S has a computable
numbering.

By Com{(S) we denote the set of all computable numberings
of the family S.
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Rogers semilattices for computable families

Let S be a computable family. Given numberings v and p of S,
one defines a new numbering v & u as follows.

(vewen) = v(n), (veun+1) = un).
The quotient structure
RI(S) == (Com{(S); <, ®)/=

is an upper semilattice. It is called the Rogers semilattice of the
computable family S.
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Example (from [Ershov 1977]).
Let A # B be c.e. sets. Consider the family S = {A, B}.
What can one say about the Rogers semilattice R{(S)?
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Example (from [Ershov 1977]).
Let A # B be c.e. sets. Consider the family S = {A, B}.
What can one say about the Rogers semilattice R{(S)?

Case 1. Assume that A\ B # () and B\ A # (). Choose
elementsa € A\ Band b€ B\ A.

Let v be a computable numbering of S. Then for any n € N,
we have:
vin)=A & acv(n) & bev(n).

Hence, the set v~ 1[A] := {n € N: v(n) = A} is computable.

This fact implies that any computable numberings v and p of
the family S are equivalent.
In other words, the semilattice R{(S) is one-element.

Nikolay Bazhenov Rogers semilattices and their first-order theories ALC-2019

4/ 40



Case 2. Suppose that A C Bor B C A. W.l.o.g., one may
assume that AC Band be B\ A.

Let W be a c.e. set such that W # () and W # N. One can
define a numbering

W(n) — A7 'f n ¢ W,
B, ifneW.

It is not hard to see that "V is a computable numbering of S.
Furthermore, for any c.e. sets W and V,

N < e W<, V.

On the other hand, if p is an arbitrary computable numbering of
S, then (u(n) = B) < (b € u(n)). Thus, the set = 1[B] is c.e.

Therefore, we deduce that the structure RY(S) is isomorphic to
the semilattice of c.e. m-degrees R,,.
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The study of computable numberings goes back to 1950s
(Friedberg, Kleene, Kolmogorov, Rogers, Uspenskii, ...). The
monograph of Ershov (1977) became one of the keystones of the
theory of numberings.

Here we talk about two directions:

(i) Numberings in the hyperarithmetical and analytical
hierarchies.

(ii) Different kinds of reducibilities between numberings.
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['-Computable numberings

Goncharov and Sorbi (1997) developed the foundations of the
theory of generalized computable numberings.

Let I' be a complexity class (e.g., ¥Y, TI9, or d—E(l)). A
numbering v of a family S C P(N) is I'-computable if
{{n,z) : x €v(n)} el.

A family S is I'-computable if S has a I'-computable
numbering. By Comp(S) we denote the set of all I'-computable
numberings of S.

Note that the classical notion of a computable numbering
becomes a synonym for a X{-computable numbering.
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['-Computable numberings

Assume that a class I' has the following properties:
(a) If v is a I'-computable numbering and p is a numbering such
that p < v, then p is also I'-computable.
(b) If numberings v and p are both I'-computable, then the
numbering v @ p is also I'-computable.
[It is not hard to show that any X- or Il-class from standard recursion-theoretic
hierarchies (e.g., arithmetical, hyperarithmetical, analytical, or the Ershov

hierarchy) satisfies these conditions.]
The quotient structure
Rr(S) := (Comp(S); <, ®)/=
is an upper semilattice. It is called the Rogers semilattice of the

I'-computable family S.
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We say that an upper semilattice i = (U; <,V) is a Rogers
I-semilattice if there is a I'-computable family S C P(N) such
that U = Rp(S).

Problem 1
Study isomorphism types of Rogers I'-semilattices.
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Problem 1
Study isomorphism types of Rogers I'-semilattices.

Outline:
(a) Some global properties of Rogers semilattices.

(b) Comparing isomorphism types of Rogers semilattices for
different T".

(c) Number of isomorphism types (for a fixed I').
(d) Elementary theories.
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Some global properties of Rogers semilattices

Theorem (Khutoretskii 1971)

Every Rogers ¥:0-semilattice is either one-element, or infinite.

Theorem (Selivanov 1976)

If a Rogers Y{-semilattice is infinite, then it is not a lattice.
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Some global properties of Rogers semilattices

Theorem (Goncharov and Sorbi 1997)

Let o > 2 be a computable successor ordinal. Let .S be a
3Y-computable family such that S contains at least two elements.
Then the Rogers semilattice Ry (.5) is infinite, and it is not a
lattice.

Note that if S contains precisely one element, then the structure Rso (S) is

one-element.

Theorem (essentially, Dorzhieva 2016)

Let n be a non-zero natural number. Let S be a II}-computable
family with at least two elements. Then the semilattice R (5) is
infinite, and it is not a lattice.
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Rogers semilattices for different levels

We say that an upper semilattice is non-trivial if it contains
more than one element.

Theorem (Podzorov 2008)

Suppose that m and n are non-zero natural numbers with
m >n+ 2. If U is a non-trivial Rogers X -semilattice, then I/ is
not isomorphic to any Rogers ¥0-semilattice.

Theorem (Badaev and Goncharov 2008)

Suppose that « and 3 are non-zero computable ordinals such that
a > B+ 3. If U is a non-trivial Rogers Eg—semilattice, then U is
not isomorphic to any Rogers Z%—semilattice.
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Rogers semilattices for different levels

Theorem 1 (B., Ospichev, and Yamaleev)

Suppose that m and n are non-zero natural numbers with
m >n+ 1. If U is a non-trivial Rogers H}n—semilattice, then U is
not isomorphic to any Rogers IT}-semilattice.
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Proof of Theorem 1: Outline

(1) First, we give an upper bound on the complexity of intervals
inside Rogers TT}-semilattices.

By E,, we denote the m-complete X! set.

Lemma 1

Let M be a Rogers I1.-semilattice. If a <, b are elements from
M, then the interval [a;b] A, treated as a structure in the
language {<,V}, has a X9(E,,) presentation.
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Proof of Theorem 1: Outline

Recall that m > n + 1.

(2) We show that inside any non-trivial Rogers II. -semilattice,
one can find a “sufficiently complicated” interval.

By applying the result of Downey and Knight (1992), one can
choose a countable linear order £ such that:
» L has the least and the greatest elements,
» £ has a deg(E,)®-computable copy, and
» £ has no %(E,)-computable presentations.

By Lemma 1, £ cannot be realized as an interval inside a
Rogers IT!-semilattice.

On the other hand, £ has a Al presentation, and this is
enough to obtain the following: Inside any non-trivial Rogers
I1},-semilattice, there exists an interval isomorphic to L.
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Levels of the Ershov hierarchy

Let n be a non-zero natural number. Recall that:

» A set X C Nis 2n-c.e. if there are c.e. sets
Wi, Wa, ..., Way,_1, Wa, such that

X = (Wl \ WQ) U (Wg \ W4) J---u (WQn_l \ Wgn).

> Aset X is (2n + 1)-c.e. if there are c.e. sets
Wi, Wa, ..., Wan_1, Won, Wopnt1 such that

X = Wi\ W)U W3\ Wy)U---U(Wap_1 \ Wap) UWapi.

By ¥, we denote the class of all m-c.e. sets.
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Levels of the Ershov hierarchy

The case of the Ershov hierarchy is quite different:

Theorem (Herbert, Jain, Lempp, Mustafa, and Stephan)

Let m and n be non-zero natural numbers with m > n + 1. Then
every Rogers ¥ 1-semilattice is also a Rogers ¥, 1-semilattice
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Number of isomorphism types: X! case

Theorem (Ershov and Lavrov 1973)

There are finite families F}, ¢ € w, of c.e. sets such that the
Rogers semilattices RE? (F}), i € w, are pairwise non-isomorphic.

Theorem (V'yugin 1973)

There are E(l)—computable families S;, ¢ € w, such that the
semilattices Ryo(S;), @ € w, are pairwise elementarily
non-equivalent.
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Number of isomorphism types

Theorem (Badaev, Goncharov, and Sorbi 2005)

Let n > 2 be a natural number. There are X)-computable families
S;, © € w, such that the semilattices RE%(SZ-), 1 € w, are pairwise
elementarily non-equivalent.

Open Question 1

Let n be a non-zero natural number. Are there infinitely many
pairwise non-isomorphic Rogers IT!-semilattices?
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Elementary theories of Rogers I'-semilattices

Theorem (Badaev, Goncharov, Podzorov, and Sorbi 2003)

Let n > 2 be a natural number. For any non-trivial Rogers
3V _semilattice U, its first-order theory Th(U) is hereditarily
undecidable.

Theorem (Dorzhieva 2016)

Let n be a non-zero natural number. For any non-trivial Rogers
I1}-semilattice U, the theory Th(U) is hereditarily undecidable.
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Let U be a non-trivial Rogers 1} -semilattice.

Dorzhieva (2016) provides a first-order interpretation (with
parameters) of the poset (£*; C*) inside U. An analysis of the
interpretation shows the following:

Corollary
The set IIg-Th<(U), i.e. the Ilg-fragment of the theory Th(Uf) in
the language {<}, is hereditarily undecidable.

The methods of the proof of Theorem 1 allow to obtain the
following:

Proposition

» The fragment ¥1-Th<(U) is decidable.
» The fragment II3-T'h<(U) is hereditarily undecidable.
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Problem 2
Study the complexity of the first-order theories for Rogers

I'-semilattices: What are their m-degrees?

In general, the problem seems to be quite hard to attack:
e.g., recall that there are countably many elementary theories of
Rogers Y{-semilattices [V'yugin 1973].

As a first step to tackle Problem 2, we introduce another
approach.
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The semilattice R of all numberings

Recall that in general, when we say that a numbering v is
reducible to a numbering u, we do not require that v and pu are
numberings of the same family. Indeed,

v:N— S,
onto

w:N— T, = SCT.

onto

v<

Therefore, one can consider the following structure:
Let Num := {v : v is a function from N into P(N)}. Then the
quotient
R := (Num;<,®)/=

is well-defined, and it is an upper semilattice. We say that R is the
Rogers semilattice of all numberings.
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One can also work with natural subsystems of R:

Let T be a complexity class (e.g., 39 or II1). Then the structure
Rr := ({v € Num : v is I'-computable}; <, @) /=

is called the Rogers semilattice of all I'-computable numberings.
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The complexity of Th(Rxp)

Theorem 2 (B., Mustafa, and Yamaleev 2019)
The theory Th(RE(l)), i.e. the elementary theory of the Rogers
semilattice of all X{-computable numberings, is recursively

isomorphic to first-order arithmetic.
Moreover, the fragment II5-Th(Ryo) is hereditarily undecidable.
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Proof of Theorem 2: Outline

(1) Recall the example from [Ershov 1977]: If A C B are c.e.
sets, then the Rogers Y{-semilattice Ryso({4, B}) is isomorphic to
the semilattice of c.e. m-degrees R,,.

This immediately gives a first-order interpretation (with
parameters!) of R,, inside RE?.

(2) In order to eliminate the parameters from the interpretation,
we employ the following simple fact: Every minimal element inside
RE? is induced by a numbering of a one-element family. Thus, one
can also provide a first-order definition for the elements induced by
numberings of two-element families.

Recall than Nies (1994) proved that the theory Th(R.,,) is
recursively isomorphic to first-order arithmetic. Since R, is
first-order interpretable without parameters inside RE?, we deduce
that Th(Rgo) =1 Th(Ruy,).
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The complexity of Th(R)

Recall that R is the semilattice of all numberings.

Theorem 3 (B., Mustafa, and Yamaleev 2019)

The theory Th(R) is recursively isomorphic to second-order
arithmetic. The fragment II5-T'h(R) is hereditarily undecidable.

The proof is similar to the previous one, modulo the following
modification: We use that the elementary theory of the semilattice
of all m-degrees D,,, is recursively isomorphic to second-order
arithmetic [Nerode and Shore 1980].
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The complexity of T'h(Rso)

We also obtain a partial result on the semilattice of all
¥9-computable numberings.
Proposition (B., Mustafa, and Yamaleev 2019)

Let o be a computable successor ordinal such that a > 2. The
elementary theory of the semilattice of X0 m-degrees is 1-reducible
to Th(Rzg).
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Open Question 2

Let « be a non-zero computable ordinal. Is it true that for any
non-trivial Rogers X0-semilattices & and V, the theories Th(lA)
and Th(V) are recursively isomorphic?

Note that the following question is still open:
Is it true that for any non-trivial Rogers ¥-semilattice i/, the
theory T'h(U) is undecidable?
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In the setting of analytical numberings, the following problem
seems to be of interest:

Open Question 3

Study the connections between additional set-theoretic
assumptions and the results on II}-computable numberings.

So far, there are only few results in this direction.
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Friedberg numberings

A numbering v is Friedberg if for any natural numbers m # n,
we have v(m) # v(n).

Theorem (Owings 1970)

The family of all I1} sets has no II}-computable Friedberg
numbering.

Theorem (Dorzhieva)

(a) The family of all TI} sets has no IIi-computable Friedberg
numbering.

(b) Assume V' = L. For any natural number n > 3, the family of
all TT! sets has no IT.-computable Friedberg numbering.
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[1. Different kinds of reducibility between numberings:

(a) Relativized reducibility.
(b) bm-Reducibility.



Relativized reducibility

Let d be a Turing degree.

A numbering v is d-reducible to a numbering 1, denoted by
v <4 M, if there is a d-computable function f(x) such that

v(n) = u(f(n)) for all n.

For a I'-computable family .S, one can introduce an upper
semilattice
RE(S) := (Comr(5); <a, @) /=q-
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0™-reducibility

In the series of papers (2003), Badaev, Goncharov, Podzorov,
and Sorbi obtained several results on semilattices Rgon)(S), where
n,m € w: in particular,

Theorem (Badaev, Goncharov, and Sorbi 2003)

Let m be a non-zero natural number. Consider the following two
»9 -computable families:

> [ is the family of all finite sets,
» S is the family of all X9, sets.

Then for any ¢ < m, the semilattices R(E)(;)(F) and R%?(S) are
not isomorphic.

Nikolay Bazhenov Rogers semilattices and their first-order theories ALC-2019 35/ 40



Theorem (Goncharov 1982)

Let S be a %Y-computable family. Suppose that S has two
Y0-computable Friedberg numberings v and p such that v # u
and v =¢/ u. Then S has infinitely many pairwise non-equivalent,
3{-computable Friedberg numberings.

This result has a counterpart in computable structure theory:

Theorem (Goncharov 1982)

Let A be a computable structure. Suppose that BB is a computable
copy of A such that 5 %10 A and B =9 A. Then A has infinite
computable dimension.
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bm-Reducibility
Maslova (1979) introduced a bounded version of m-reducibility
on sets:
Let A and B be subsets of N. Then A <;,,, B if there is a total
computable function g(z) such that:

(a) ne Aiff g(n) € B, for all n € N;
(b) for any k € N, the preimage g~ (k) is a finite set.
Following her approach, we say that a numbering v is

bm-reducible to a numbering i, denoted by v <y, , if there is a
total computable function f(z) with the following properties:

1. v(n) = u(f(n)), for all n € N;
2. for any k € N, the set f~1(k) is finite.

Consider a I'-computable family S. In a natural way, the
reducibility <p,,, gives rise to the corresponding Rogers
bm-semilattice:

RE™(S) := (Comr(S); <pm, ®) /=y,
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Cardinalities of bm-semilattices

Recall the result of Khutoretskii (1971):
For a X:Y-computable family S, the semilattice Ryo(S) is either
1
one-element, or infinite.

This result does not extend to the case of <,,:

Theorem 4 (B., Mustafa, and Ospichev)

» Let S be a finite ¥9-computable family with precisely n > 2
elements. Then the cardinality of the Rogers bm-semilattice
RI’ET('}(S) is either equal to 2™ — 1, or countably infinite. Both
thesle cases can be realized.

» For any non-zero natural number n, there is an infinite
¥9-computable family 7" such that the cardinality of the
bm-semilattice RZ’E"(;(T) is equal to 2".

Nikolay Bazhenov Rogers semilattices and their first-order theories ALC-2019 38 / 40



There is a bn-lattice

Recall the result of Selivanov (1976):
Let S be a X9-computable family. If the structure Ryo(S) is
1
infinite, then it is not a lattice.

Again, this cannot be extended to the bm-case:

Proposition (B., Mustafa, and Ospichev)

Consider a X.{-computable family S := {{k} : k € N}. Then the
structure R”E”&(S) is isomorphic to the lattice of all TIJ sets (under
1

inclusion).
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Nevertheless, our results above do not transfer to further levels
of the hyperarithmetical hierarchy:

Proposition (B., Mustafa, and Ospichev)

Let o > 2 be a computable successor ordinal. Let .S be a
¥¥-computable family such that S contains at least two elements.
Then the bm-semilattice R%7(S) is infinite, and it is not a lattice.

Open Question 4

Provide a complete characterization for possible cardinalities of
bm-semilattices R;T?(S)
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