Rogers Semilattices and Their First-Order Theories

Nikolay Bazhenov

Sobolev Institute of Mathematics, Novosibirsk, Russia

16th Asian Logic Conference June 17, 2019

Numberings

Let S be a countable set. A **numbering** ν of the set S is a surjective map from the set of natural numbers \mathbb{N} onto S.

Suppose that ν is a numbering of a set S_0 , and μ is a numbering of a set S_1 . The numbering ν is **reducible** to μ , denoted by $\nu \leq \mu$, if there is a total computable function f(x) such that

$$\nu(n)=\mu(f(n)) \text{ for all } n\in\mathbb{N}.$$

Note the following: if $\nu \leq \mu$, then $S_0 \subseteq S_1$.

Numberings ν and μ are **equivalent** (denoted by $\nu \equiv \mu$) if $\nu \leq \mu$ and $\mu \leq \nu$.

1 / 40

Computable families

In the talk, we consider only numberings of families $S \subset P(\mathbb{N})$. A numbering ν is **computable** if the set

$$\{\langle n, x \rangle : x \in \nu(n)\}$$

is computably enumerable.

A family $S \subset P(\mathbb{N})$ is *computable* if S has a computable numbering.

By $Com_1^0(S)$ we denote the set of all computable numberings of the family S.

Rogers semilattices for computable families

Let S be a computable family. Given numberings ν and μ of S, one defines a new numbering $\nu \oplus \mu$ as follows.

$$(\nu \oplus \mu)(2n) := \nu(n), \ \ (\nu \oplus \mu)(2n+1) := \mu(n).$$

The quotient structure

$$\mathcal{R}^0_1(S) := (Com^0_1(S); \leq, \oplus)/\equiv$$

is an upper semilattice. It is called the **Rogers semilattice** of the computable family S.

Example (from [Ershov 1977]). Let $A \neq B$ be c.e. sets. Consider the family $S = \{A, B\}$. What can one say about the Rogers semilattice $\mathcal{R}_1^0(S)$? Example (from [Ershov 1977]).

Let $A \neq B$ be c.e. sets. Consider the family $S = \{A, B\}$. What can one say about the Rogers semilattice $\mathcal{R}_1^0(S)$?

<u>Case 1.</u> Assume that $A \setminus B \neq \emptyset$ and $B \setminus A \neq \emptyset$. Choose elements $a \in A \setminus B$ and $b \in B \setminus A$.

Let ν be a computable numbering of S. Then for any $n \in \mathbb{N}$, we have:

$$\nu(n) = A \ \Leftrightarrow \ a \in \nu(n) \ \Leftrightarrow \ b \not\in \nu(n).$$

Hence, the set $\nu^{-1}[A] := \{n \in \mathbb{N} : \nu(n) = A\}$ is computable.

This fact implies that any computable numberings ν and μ of the family S are equivalent.

In other words, the semilattice $\mathcal{R}_1^0(S)$ is *one-element*.

<u>Case 2.</u> Suppose that $A \subset B$ or $B \subset A$. W.l.o.g., one may assume that $A \subset B$ and $b \in B \setminus A$.

Let W be a c.e. set such that $W \neq \emptyset$ and $W \neq \mathbb{N}$. One can define a numbering

$$\nu^{W}(n) := \begin{cases} A, & \text{if } n \notin W, \\ B, & \text{if } n \in W. \end{cases}$$

It is not hard to see that ν^W is a computable numbering of S. Furthermore, for any c.e. sets W and V,

$$\nu^W \le \nu^V \iff W \le_m V.$$

On the other hand, if μ is an arbitrary computable numbering of S, then $(\mu(n) = B) \Leftrightarrow (b \in \mu(n))$. Thus, the set $\mu^{-1}[B]$ is c.e.

Therefore, we deduce that the structure $\mathcal{R}_1^0(S)$ is *isomorphic* to the semilattice of c.e. *m*-degrees \mathbf{R}_m .

The study of computable numberings goes back to 1950s (Friedberg, Kleene, Kolmogorov, Rogers, Uspenskii, ...). The monograph of Ershov (1977) became one of the keystones of the theory of numberings.

Here we talk about two directions:

- (i) Numberings in the hyperarithmetical and analytical hierarchies.
- (ii) Different kinds of reducibilities between numberings.

Γ -Computable numberings

Goncharov and Sorbi (1997) developed the foundations of the theory of generalized computable numberings.

Let Γ be a complexity class (e.g., Σ_1^0 , Π_2^0 , or d- Σ_1^0). A numbering ν of a family $S \subset P(\mathbb{N})$ is Γ -computable if

 $\{\langle n,x\rangle:x\in\nu(n)\}\in\Gamma.$

A family S is Γ -computable if S has a Γ -computable numbering. By $Com_{\Gamma}(S)$ we denote the set of all Γ -computable numberings of S.

Note that the classical notion of a computable numbering becomes a synonym for a Σ_1^0 -computable numbering.

Γ -Computable numberings

Assume that a class Γ has the following properties:

- (a) If ν is a Γ -computable numbering and μ is a numbering such that $\mu \leq \nu$, then μ is also Γ -computable.
- (b) If numberings ν and μ are both Γ -computable, then the numbering $\nu \oplus \mu$ is also Γ -computable.

[It is not hard to show that any Σ - or Π -class from standard recursion-theoretic hierarchies (e.g., arithmetical, hyperarithmetical, analytical, or the Ershov hierarchy) satisfies these conditions.]

The quotient structure

$$\mathcal{R}_{\Gamma}(S) := (Com_{\Gamma}(S); \leq, \oplus)/\equiv$$

is an upper semilattice. It is called the Rogers semilattice of the $\Gamma\text{-computable family }S.$

We say that an upper semilattice $\mathcal{U} = (U; \leq, \vee)$ is a **Rogers** Γ -semilattice if there is a Γ -computable family $S \subset P(\mathbb{N})$ such that $\mathcal{U} \cong \mathcal{R}_{\Gamma}(S)$.

Problem 1 Study isomorphism types of Rogers Γ -semilattices.

Problem 1

Study isomorphism types of Rogers Γ -semilattices.

Outline:

- (a) Some global properties of Rogers semilattices.
- (b) Comparing isomorphism types of Rogers semilattices for different $\Gamma.$
- (c) Number of isomorphism types (for a fixed Γ).
- (d) Elementary theories.

Some global properties of Rogers semilattices

Theorem (Khutoretskii 1971)

Every Rogers Σ_1^0 -semilattice is either one-element, or infinite.

Theorem (Selivanov 1976)

If a Rogers Σ_1^0 -semilattice is infinite, then it is not a lattice.

Some global properties of Rogers semilattices

Theorem (Goncharov and Sorbi 1997)

Let $\alpha \geq 2$ be a computable successor ordinal. Let S be a Σ^0_{α} -computable family such that S contains at least two elements. Then the Rogers semilattice $\mathcal{R}_{\Sigma^0_{\alpha}}(S)$ is infinite, and it is not a lattice.

Note that if S contains precisely one element, then the structure $\mathcal{R}_{\Sigma^0_\alpha}(S)$ is one-element.

Theorem (essentially, Dorzhieva 2016)

Let n be a non-zero natural number. Let S be a Π_n^1 -computable family with at least two elements. Then the semilattice $\mathcal{R}_{\Pi_n^1}(S)$ is infinite, and it is not a lattice.

Rogers semilattices for different levels

We say that an upper semilattice is *non-trivial* if it contains more than one element.

Theorem (Podzorov 2008)

Suppose that m and n are non-zero natural numbers with $m \ge n+2$. If \mathcal{U} is a non-trivial Rogers Σ_m^0 -semilattice, then \mathcal{U} is not isomorphic to any Rogers Σ_n^0 -semilattice.

Theorem (Badaev and Goncharov 2008)

Suppose that α and β are non-zero computable ordinals such that $\alpha \geq \beta + 3$. If \mathcal{U} is a non-trivial Rogers Σ^0_{α} -semilattice, then \mathcal{U} is not isomorphic to any Rogers Σ^0_{β} -semilattice.

Rogers semilattices for different levels

Theorem 1 (B., Ospichev, and Yamaleev)

Suppose that m and n are non-zero natural numbers with $m \ge n+1$. If \mathcal{U} is a non-trivial Rogers Π_m^1 -semilattice, then \mathcal{U} is not isomorphic to any Rogers Π_n^1 -semilattice.

(1) First, we give an upper bound on the complexity of intervals inside Rogers Π_n^1 -semilattices.

By E_n we denote the *m*-complete Σ_n^1 set.

Lemma 1

Let \mathcal{M} be a Rogers Π_n^1 -semilattice. If $a <_{\mathcal{M}} b$ are elements from \mathcal{M} , then the interval $[a; b]_{\mathcal{M}}$, treated as a structure in the language $\{\leq, \lor\}$, has a $\Sigma_2^0(E_n)$ presentation.

Proof of Theorem 1: Outline

Recall that $m \ge n+1$.

(2) We show that inside any non-trivial Rogers Π_m^1 -semilattice, one can find a "sufficiently complicated" interval.

By applying the result of Downey and Knight (1992), one can choose a countable linear order \mathcal{L} such that:

 $\blacktriangleright~\mathcal{L}$ has the least and the greatest elements,

- \mathcal{L} has a $\deg_T(E_n)^{(5)}$ -computable copy, and
- \mathcal{L} has no $\Sigma_2^0(E_n)$ -computable presentations.

By Lemma 1, \mathcal{L} cannot be realized as an interval inside a Rogers Π_n^1 -semilattice.

On the other hand, \mathcal{L} has a Δ_{n+1}^1 presentation, and this is enough to obtain the following: Inside any non-trivial Rogers Π_m^1 -semilattice, there exists an interval isomorphic to \mathcal{L} .

Levels of the Ershov hierarchy

Let n be a non-zero natural number. Recall that:

...

By Σ_m^{-1} we denote the class of all m-c.e. sets.

The case of the Ershov hierarchy is quite different:

Theorem (Herbert, Jain, Lempp, Mustafa, and Stephan) Let m and n be non-zero natural numbers with $m \ge n+1$. Then every Rogers Σ_n^{-1} -semilattice is also a Rogers Σ_m^{-1} -semilattice

Number of isomorphism types: Σ_1^0 case

Theorem (Ershov and Lavrov 1973)

There are finite families F_i , $i \in \omega$, of c.e. sets such that the Rogers semilattices $\mathcal{R}_{\Sigma_1^0}(F_i)$, $i \in \omega$, are pairwise non-isomorphic.

Theorem (V'yugin 1973)

There are Σ_1^0 -computable families S_i , $i \in \omega$, such that the semilattices $\mathcal{R}_{\Sigma_1^0}(S_i)$, $i \in \omega$, are pairwise elementarily non-equivalent.

Number of isomorphism types

Theorem (Badaev, Goncharov, and Sorbi 2005)

Let $n \geq 2$ be a natural number. There are Σ_n^0 -computable families S_i , $i \in \omega$, such that the semilattices $\mathcal{R}_{\Sigma_n^0}(S_i)$, $i \in \omega$, are pairwise elementarily non-equivalent.

Open Question 1

Let n be a non-zero natural number. Are there infinitely many pairwise non-isomorphic Rogers Π_n^1 -semilattices?

Elementary theories of Rogers Γ -semilattices

Theorem (Badaev, Goncharov, Podzorov, and Sorbi 2003) Let $n \geq 2$ be a natural number. For any non-trivial Rogers Σ_n^0 -semilattice \mathcal{U} , its first-order theory $Th(\mathcal{U})$ is hereditarily undecidable.

Theorem (Dorzhieva 2016)

Let n be a non-zero natural number. For any non-trivial Rogers Π^1_n -semilattice \mathcal{U} , the theory $Th(\mathcal{U})$ is hereditarily undecidable.

Let \mathcal{U} be a non-trivial Rogers Π^1_n -semilattice.

Dorzhieva (2016) provides a first-order interpretation (with parameters) of the poset $(\mathcal{E}^*; \subseteq^*)$ inside \mathcal{U} . An analysis of the interpretation shows the following:

Corollary

The set Π_6 - $Th_{\leq}(\mathcal{U})$, i.e. the Π_6 -fragment of the theory $Th(\mathcal{U})$ in the language $\{\leq\}$, is hereditarily undecidable.

The methods of the proof of Theorem 1 allow to obtain the following:

Proposition

- The fragment Σ_1 - $Th_{\leq}(\mathcal{U})$ is decidable.
- The fragment Π_3 - $Th_{\leq}(\mathcal{U})$ is hereditarily undecidable.

Problem 2

Study the complexity of the first-order theories for Rogers Γ -semilattices: What are their *m*-degrees?

In general, the problem seems to be quite hard to attack: e.g., recall that there are countably many elementary theories of Rogers Σ_1^0 -semilattices [V'yugin 1973].

As a first step to tackle Problem 2, we introduce another approach.

The semilattice ${\mathcal R}$ of all numberings

Recall that in general, when we say that a numbering ν is reducible to a numbering μ , we *do not require* that ν and μ are numberings of the same family. Indeed,

$$\left.\begin{array}{l}\nu\colon\mathbb{N}\xrightarrow[]{\text{onto}}S,\\\mu\colon\mathbb{N}\xrightarrow[]{\text{onto}}T,\\\nu\leq\mu\end{array}\right\} \Rightarrow S\subseteq T.$$

Therefore, one can consider the following structure:

Let $Num:=\{\nu:\nu\text{ is a function from }\mathbb{N}\text{ into }P(\mathbb{N})\}.$ Then the quotient

$$\mathcal{R}:=(Num;\leq,\oplus)/{\equiv}$$

is well-defined, and it is an upper semilattice. We say that \mathcal{R} is the *Rogers semilattice of all numberings*.

24 / 40

One can also work with natural subsystems of \mathcal{R} : Let Γ be a complexity class (e.g., Σ_2^0 or Π_1^1). Then the structure $\mathcal{R}_{\Gamma} := (\{\nu \in Num : \nu \text{ is } \Gamma\text{-computable}\}; \leq, \oplus)/\equiv$

is called the Rogers semilattice of all Γ -computable numberings.

The complexity of $Th(\mathcal{R}_{\Sigma_1^0})$

Theorem 2 (B., Mustafa, and Yamaleev 2019)

The theory $Th(\mathcal{R}_{\Sigma_1^0})$, i.e. the elementary theory of the Rogers semilattice of all Σ_1^0 -computable numberings, is recursively isomorphic to first-order arithmetic. Moreover, the fragment Π_5 - $Th(\mathcal{R}_{\Sigma_1^0})$ is hereditarily undecidable.

Proof of Theorem 2: Outline

(1) Recall the example from [Ershov 1977]: If $A \subsetneq B$ are c.e. sets, then the Rogers Σ_1^0 -semilattice $\mathcal{R}_{\Sigma_1^0}(\{A, B\})$ is isomorphic to the semilattice of c.e. *m*-degrees \mathbf{R}_m .

This immediately gives a first-order interpretation (with parameters!) of \mathbf{R}_m inside $\mathcal{R}_{\Sigma_1^0}$.

(2) In order to eliminate the parameters from the interpretation, we employ the following simple fact: Every minimal element inside $\mathcal{R}_{\Sigma_1^0}$ is induced by a numbering of a one-element family. Thus, one can also provide a first-order definition for the elements induced by numberings of two-element families.

Recall than Nies (1994) proved that the theory $Th(\mathbf{R}_m)$ is recursively isomorphic to first-order arithmetic. Since \mathbf{R}_m is first-order interpretable without parameters inside $\mathcal{R}_{\Sigma_1^0}$, we deduce that $Th(\mathcal{R}_{\Sigma_1^0}) \equiv_1 Th(\mathbf{R}_m)$. The complexity of $Th(\mathcal{R})$

Recall that $\ensuremath{\mathcal{R}}$ is the semilattice of all numberings.

Theorem 3 (B., Mustafa, and Yamaleev 2019)

The theory $Th(\mathcal{R})$ is recursively isomorphic to second-order arithmetic. The fragment Π_5 - $Th(\mathcal{R})$ is hereditarily undecidable.

The proof is similar to the previous one, modulo the following modification: We use that the elementary theory of the semilattice of all m-degrees \mathbf{D}_m is recursively isomorphic to second-order arithmetic [Nerode and Shore 1980].

We also obtain a partial result on the semilattice of all $\Sigma^0_\alpha\text{-computable numberings.}$

Proposition (B., Mustafa, and Yamaleev 2019)

Let α be a computable successor ordinal such that $\alpha \geq 2$. The elementary theory of the semilattice of Σ^0_{α} *m*-degrees is 1-reducible to $Th(\mathcal{R}_{\Sigma^0_{\alpha}})$.

Open Question 2

Let α be a non-zero computable ordinal. Is it true that for any non-trivial Rogers Σ^0_{α} -semilattices \mathcal{U} and \mathcal{V} , the theories $Th(\mathcal{U})$ and $Th(\mathcal{V})$ are recursively isomorphic?

Note that the following question is still open: Is it true that for any non-trivial Rogers Σ_1^0 -semilattice \mathcal{U} , the theory $Th(\mathcal{U})$ is undecidable? In the setting of analytical numberings, the following problem seems to be of interest:

Open Question 3

Study the connections between additional set-theoretic assumptions and the results on Π^1_n -computable numberings.

So far, there are only few results in this direction.

Friedberg numberings

A numbering ν is $\mathit{Friedberg}$ if for any natural numbers $m\neq n,$ we have $\nu(m)\neq\nu(n).$

Theorem (Owings 1970)

The family of all Π^1_1 sets has no $\Pi^1_1\text{-computable Friedberg numbering.}$

Theorem (Dorzhieva)

- (a) The family of all Π^1_2 sets has no $\Pi^1_2\text{-computable Friedberg numbering.}$
- (b) Assume V = L. For any natural number $n \ge 3$, the family of all Π_n^1 sets has no Π_n^1 -computable Friedberg numbering.

II. Different kinds of reducibility between numberings:

- (a) Relativized reducibility.
- (b) *bm*-Reducibility.

Let \mathbf{d} be a Turing degree.

A numbering ν is d-reducible to a numbering μ , denoted by $\nu \leq_{\mathbf{d}} \mu$, if there is a d-computable function f(x) such that $\nu(n) = \mu(f(n))$ for all n.

For a $\Gamma\text{-computable}$ family S, one can introduce an upper semilattice

$$\mathcal{R}^{\mathbf{d}}_{\Gamma}(S) := (Com_{\Gamma}(S); \leq_{\mathbf{d}}, \oplus) / \equiv_{\mathbf{d}}.$$

$\mathbf{0}^{(n)}$ -reducibility

In the series of papers (2003), Badaev, Goncharov, Podzorov, and Sorbi obtained several results on semilattices $\mathcal{R}_{\Sigma_m^0}^{\mathbf{0}^{(n)}}(S)$, where $n, m \in \omega$: in particular,

Theorem (Badaev, Goncharov, and Sorbi 2003)

Let m be a non-zero natural number. Consider the following two $\Sigma_m^0\text{-}\mathrm{computable}$ families:

- ▶ *F* is the family of all finite sets,
- S is the family of all Σ_m^0 sets.

Then for any i < m, the semilattices $\mathcal{R}_{\Sigma_m^0}^{\mathbf{0}^{(i)}}(F)$ and $\mathcal{R}_{\Sigma_m^0}^{\mathbf{0}^{(i)}}(S)$ are not isomorphic.

Theorem (Goncharov 1982)

Let S be a Σ_1^0 -computable family. Suppose that S has two Σ_1^0 -computable Friedberg numberings ν and μ such that $\nu \not\equiv \mu$ and $\nu \equiv_{\mathbf{0}'} \mu$. Then S has infinitely many pairwise non-equivalent, Σ_1^0 -computable Friedberg numberings.

This result has a counterpart in computable structure theory:

Theorem (Goncharov 1982)

Let \mathcal{A} be a computable structure. Suppose that \mathcal{B} is a computable copy of \mathcal{A} such that $\mathcal{B} \not\cong_{\Delta_1^0} \mathcal{A}$ and $\mathcal{B} \cong_{\Delta_2^0} \mathcal{A}$. Then \mathcal{A} has infinite computable dimension.

36 / 40

bm-Reducibility

Maslova (1979) introduced a *bounded version* of m-reducibility on sets:

Let A and B be subsets of N. Then $A \leq_{bm} B$ if there is a total computable function g(x) such that:

- (a) $n \in A$ iff $g(n) \in B$, for all $n \in \mathbb{N}$;
- (b) for any $k \in \mathbb{N}$, the preimage $g^{-1}(k)$ is a finite set.

Following her approach, we say that a numbering ν is *bm*-reducible to a numbering μ , denoted by $\nu \leq_{bm} \mu$, if there is a total computable function f(x) with the following properties:

1.
$$\nu(n) = \mu(f(n))$$
, for all $n \in \mathbb{N}$;

2. for any $k \in \mathbb{N}$, the set $f^{-1}(k)$ is finite.

Consider a Γ -computable family S. In a natural way, the reducibility \leq_{bm} gives rise to the corresponding *Rogers* bm-semilattice:

$$\mathcal{R}_{\Gamma}^{bm}(S) := (Com_{\Gamma}(S); \leq_{bm}, \oplus) / \equiv_{bm}.$$

Cardinalities of *bm*-semilattices

Recall the result of Khutoretskii (1971):

For a $\Sigma^0_1\text{-computable family }S$, the semilattice $\mathcal{R}_{\Sigma^0_1}(S)$ is either one-element, or infinite.

This result *does not extend* to the case of \leq_{bm} :

Theorem 4 (B., Mustafa, and Ospichev)

- ▶ Let S be a finite Σ_1^0 -computable family with precisely $n \ge 2$ elements. Then the cardinality of the Rogers bm-semilattice $\mathcal{R}_{\Sigma_1^0}^{bm}(S)$ is either equal to $2^n - 1$, or countably infinite. Both these cases can be realized.
- For any non-zero natural number n, there is an infinite ∑₁⁰-computable family T such that the cardinality of the bm-semilattice R^{bm}_{∑₁⁰}(T) is equal to 2ⁿ.

There is a *bm*-lattice

Recall the result of Selivanov (1976): Let S be a Σ_1^0 -computable family. If the structure $\mathcal{R}_{\Sigma_1^0}(S)$ is infinite, then it is not a lattice.

Again, this *cannot be extended* to the *bm*-case:

Proposition (B., Mustafa, and Ospichev)

Consider a Σ_1^0 -computable family $S := \{\{k\} : k \in \mathbb{N}\}$. Then the structure $\mathcal{R}_{\Sigma_1^0}^{bm}(S)$ is isomorphic to the lattice of all Π_2^0 sets (under inclusion).

Nevertheless, our results above do not transfer to further levels of the hyperarithmetical hierarchy:

Proposition (B., Mustafa, and Ospichev)

Let $\alpha \geq 2$ be a computable successor ordinal. Let S be a Σ^0_{α} -computable family such that S contains at least two elements. Then the *bm*-semilattice $\mathcal{R}^{bm}_{\Sigma^0_{\alpha}}(S)$ is infinite, and it is not a lattice.

Open Question 4

Provide a complete characterization for possible cardinalities of $bm\text{-semilattices }\mathcal{R}^{bm}_{\Sigma^0_1}(S).$

- N. Bazhenov, S. Ospichev, M. Yamaleev, Isomorphism types of Rogers semilattices in the analytical hierarchy, submitted.
- N. Bazhenov, M. Mustafa, M. Yamaleev, Elementary theories and hereditary undecidability for semilattices of numberings // Arch. Math. Logic, 2019, 58:3–4, 485–500.
- N. Bazhenov, M. Mustafa, S. Ospichev, Bounded reducibility for computable numberings // Proceedings of CiE-2019, to appear.