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Numberings

Let S be a countable set. A numbering ν of the set S is a
surjective map from the set of natural numbers N onto S.

Suppose that ν is a numbering of a set S0, and µ is a
numbering of a set S1. The numbering ν is reducible to µ,
denoted by ν ≤ µ, if there is a total computable function f(x)
such that

ν(n) = µ(f(n)) for all n ∈ N.

Note the following: if ν ≤ µ, then S0 ⊆ S1.

Numberings ν and µ are equivalent (denoted by ν ≡ µ) if
ν ≤ µ and µ ≤ ν.
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Computable families

In the talk, we consider only numberings of families S ⊂ P (N).

A numbering ν is computable if the set

{〈n, x〉 : x ∈ ν(n)}

is computably enumerable.

A family S ⊂ P (N) is computable if S has a computable
numbering.

By Com0
1(S) we denote the set of all computable numberings

of the family S.
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Rogers semilattices for computable families

Let S be a computable family. Given numberings ν and µ of S,
one defines a new numbering ν ⊕ µ as follows.

(ν ⊕ µ)(2n) := ν(n), (ν ⊕ µ)(2n+ 1) := µ(n).

The quotient structure

R0
1(S) := (Com0

1(S);≤,⊕)/≡

is an upper semilattice. It is called the Rogers semilattice of the
computable family S.
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Example (from [Ershov 1977]).
Let A 6= B be c.e. sets. Consider the family S = {A,B}.

What can one say about the Rogers semilattice R0
1(S)?

Case 1. Assume that A \B 6= ∅ and B \A 6= ∅. Choose
elements a ∈ A \B and b ∈ B \A.

Let ν be a computable numbering of S. Then for any n ∈ N,
we have:

ν(n) = A ⇔ a ∈ ν(n) ⇔ b 6∈ ν(n).

Hence, the set ν−1[A] := {n ∈ N : ν(n) = A} is computable.

This fact implies that any computable numberings ν and µ of
the family S are equivalent.

In other words, the semilattice R0
1(S) is one-element.
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Case 2. Suppose that A ⊂ B or B ⊂ A. W.l.o.g., one may
assume that A ⊂ B and b ∈ B \A.

Let W be a c.e. set such that W 6= ∅ and W 6= N. One can
define a numbering

νW (n) :=

{
A, if n 6∈W,
B, if n ∈W.

It is not hard to see that νW is a computable numbering of S.
Furthermore, for any c.e. sets W and V ,

νW ≤ νV ⇔ W ≤m V.

On the other hand, if µ is an arbitrary computable numbering of
S, then (µ(n) = B)⇔ (b ∈ µ(n)). Thus, the set µ−1[B] is c.e.

Therefore, we deduce that the structure R0
1(S) is isomorphic to

the semilattice of c.e. m-degrees Rm.
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The study of computable numberings goes back to 1950s
(Friedberg, Kleene, Kolmogorov, Rogers, Uspenskii, . . . ). The
monograph of Ershov (1977) became one of the keystones of the
theory of numberings.

Here we talk about two directions:

(i) Numberings in the hyperarithmetical and analytical
hierarchies.

(ii) Different kinds of reducibilities between numberings.
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Γ-Computable numberings

Goncharov and Sorbi (1997) developed the foundations of the
theory of generalized computable numberings.

Let Γ be a complexity class (e.g., Σ0
1, Π0

2, or d-Σ0
1). A

numbering ν of a family S ⊂ P (N) is Γ-computable if

{〈n, x〉 : x ∈ ν(n)} ∈ Γ.

A family S is Γ-computable if S has a Γ-computable
numbering. By ComΓ(S) we denote the set of all Γ-computable
numberings of S.

Note that the classical notion of a computable numbering
becomes a synonym for a Σ0

1-computable numbering.
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Γ-Computable numberings

Assume that a class Γ has the following properties:

(a) If ν is a Γ-computable numbering and µ is a numbering such
that µ ≤ ν, then µ is also Γ-computable.

(b) If numberings ν and µ are both Γ-computable, then the
numbering ν ⊕ µ is also Γ-computable.

[It is not hard to show that any Σ- or Π-class from standard recursion-theoretic

hierarchies (e.g., arithmetical, hyperarithmetical, analytical, or the Ershov

hierarchy) satisfies these conditions.]

The quotient structure

RΓ(S) := (ComΓ(S);≤,⊕)/≡

is an upper semilattice. It is called the Rogers semilattice of the
Γ-computable family S.
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We say that an upper semilattice U = (U ;≤,∨) is a Rogers
Γ-semilattice if there is a Γ-computable family S ⊂ P (N) such
that U ∼= RΓ(S).

Problem 1
Study isomorphism types of Rogers Γ-semilattices.
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Problem 1
Study isomorphism types of Rogers Γ-semilattices.

Outline:

(a) Some global properties of Rogers semilattices.

(b) Comparing isomorphism types of Rogers semilattices for
different Γ.

(c) Number of isomorphism types (for a fixed Γ).

(d) Elementary theories.

Nikolay Bazhenov Rogers semilattices and their first-order theories ALC–2019 10 / 40



Some global properties of Rogers semilattices

Theorem (Khutoretskii 1971)

Every Rogers Σ0
1-semilattice is either one-element, or infinite.

Theorem (Selivanov 1976)

If a Rogers Σ0
1-semilattice is infinite, then it is not a lattice.
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Some global properties of Rogers semilattices

Theorem (Goncharov and Sorbi 1997)

Let α ≥ 2 be a computable successor ordinal. Let S be a
Σ0
α-computable family such that S contains at least two elements.

Then the Rogers semilattice RΣ0
α
(S) is infinite, and it is not a

lattice.

Note that if S contains precisely one element, then the structure RΣ0
α

(S) is

one-element.

Theorem (essentially, Dorzhieva 2016)

Let n be a non-zero natural number. Let S be a Π1
n-computable

family with at least two elements. Then the semilattice RΠ1
n
(S) is

infinite, and it is not a lattice.
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Rogers semilattices for different levels

We say that an upper semilattice is non-trivial if it contains
more than one element.

Theorem (Podzorov 2008)

Suppose that m and n are non-zero natural numbers with
m ≥ n+ 2. If U is a non-trivial Rogers Σ0

m-semilattice, then U is
not isomorphic to any Rogers Σ0

n-semilattice.

Theorem (Badaev and Goncharov 2008)

Suppose that α and β are non-zero computable ordinals such that
α ≥ β + 3. If U is a non-trivial Rogers Σ0

α-semilattice, then U is
not isomorphic to any Rogers Σ0

β-semilattice.
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Rogers semilattices for different levels

Theorem 1 (B., Ospichev, and Yamaleev)

Suppose that m and n are non-zero natural numbers with
m ≥ n+ 1. If U is a non-trivial Rogers Π1

m-semilattice, then U is
not isomorphic to any Rogers Π1

n-semilattice.
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Proof of Theorem 1: Outline

(1) First, we give an upper bound on the complexity of intervals
inside Rogers Π1

n-semilattices.

By En we denote the m-complete Σ1
n set.

Lemma 1
Let M be a Rogers Π1

n-semilattice. If a <M b are elements from
M, then the interval [a; b]M, treated as a structure in the
language {≤,∨}, has a Σ0

2(En) presentation.
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Proof of Theorem 1: Outline

Recall that m ≥ n+ 1.

(2) We show that inside any non-trivial Rogers Π1
m-semilattice,

one can find a “sufficiently complicated” interval.

By applying the result of Downey and Knight (1992), one can
choose a countable linear order L such that:

I L has the least and the greatest elements,

I L has a degT (En)(5)-computable copy, and

I L has no Σ0
2(En)-computable presentations.

By Lemma 1, L cannot be realized as an interval inside a
Rogers Π1

n-semilattice.
On the other hand, L has a ∆1

n+1 presentation, and this is
enough to obtain the following: Inside any non-trivial Rogers
Π1
m-semilattice, there exists an interval isomorphic to L.
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Levels of the Ershov hierarchy

Let n be a non-zero natural number. Recall that:

I A set X ⊆ N is 2n-c.e. if there are c.e. sets
W1,W2, . . . ,W2n−1,W2n such that

X = (W1 \W2) ∪ (W3 \W4) ∪ · · · ∪ (W2n−1 \W2n).

I A set X is (2n+ 1)-c.e. if there are c.e. sets
W1,W2, . . . ,W2n−1,W2n,W2n+1 such that

X = (W1 \W2) ∪ (W3 \W4) ∪ · · · ∪ (W2n−1 \W2n) ∪W2n+1.

By Σ−1
m we denote the class of all m-c.e. sets.
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Levels of the Ershov hierarchy

The case of the Ershov hierarchy is quite different:

Theorem (Herbert, Jain, Lempp, Mustafa, and Stephan)

Let m and n be non-zero natural numbers with m ≥ n+ 1. Then
every Rogers Σ−1

n -semilattice is also a Rogers Σ−1
m -semilattice
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Number of isomorphism types: Σ0
1 case

Theorem (Ershov and Lavrov 1973)

There are finite families Fi, i ∈ ω, of c.e. sets such that the
Rogers semilattices RΣ0

1
(Fi), i ∈ ω, are pairwise non-isomorphic.

Theorem (V’yugin 1973)

There are Σ0
1-computable families Si, i ∈ ω, such that the

semilattices RΣ0
1
(Si), i ∈ ω, are pairwise elementarily

non-equivalent.
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Number of isomorphism types

Theorem (Badaev, Goncharov, and Sorbi 2005)

Let n ≥ 2 be a natural number. There are Σ0
n-computable families

Si, i ∈ ω, such that the semilattices RΣ0
n
(Si), i ∈ ω, are pairwise

elementarily non-equivalent.

Open Question 1

Let n be a non-zero natural number. Are there infinitely many
pairwise non-isomorphic Rogers Π1

n-semilattices?
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Elementary theories of Rogers Γ-semilattices

Theorem (Badaev, Goncharov, Podzorov, and Sorbi 2003)

Let n ≥ 2 be a natural number. For any non-trivial Rogers
Σ0
n-semilattice U , its first-order theory Th(U) is hereditarily

undecidable.

Theorem (Dorzhieva 2016)

Let n be a non-zero natural number. For any non-trivial Rogers
Π1
n-semilattice U , the theory Th(U) is hereditarily undecidable.
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Let U be a non-trivial Rogers Π1
n-semilattice.

Dorzhieva (2016) provides a first-order interpretation (with
parameters) of the poset (E∗;⊆∗) inside U . An analysis of the
interpretation shows the following:

Corollary

The set Π6-Th≤(U), i.e. the Π6-fragment of the theory Th(U) in
the language {≤}, is hereditarily undecidable.

The methods of the proof of Theorem 1 allow to obtain the
following:

Proposition

I The fragment Σ1-Th≤(U) is decidable.

I The fragment Π3-Th≤(U) is hereditarily undecidable.
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Problem 2
Study the complexity of the first-order theories for Rogers
Γ-semilattices: What are their m-degrees?

In general, the problem seems to be quite hard to attack:
e.g., recall that there are countably many elementary theories of
Rogers Σ0

1-semilattices [V’yugin 1973].

As a first step to tackle Problem 2, we introduce another
approach.
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The semilattice R of all numberings

Recall that in general, when we say that a numbering ν is
reducible to a numbering µ, we do not require that ν and µ are
numberings of the same family. Indeed,

ν : N −→
onto

S,

µ : N −→
onto

T,

ν ≤ µ

 ⇒ S ⊆ T.

Therefore, one can consider the following structure:
Let Num := {ν : ν is a function from N into P (N)}. Then the

quotient
R := (Num;≤,⊕)/≡

is well-defined, and it is an upper semilattice. We say that R is the
Rogers semilattice of all numberings.
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One can also work with natural subsystems of R:

Let Γ be a complexity class (e.g., Σ0
2 or Π1

1). Then the structure

RΓ := ({ν ∈ Num : ν is Γ-computable};≤,⊕)/≡

is called the Rogers semilattice of all Γ-computable numberings.
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The complexity of Th(RΣ0
1
)

Theorem 2 (B., Mustafa, and Yamaleev 2019)

The theory Th(RΣ0
1
), i.e. the elementary theory of the Rogers

semilattice of all Σ0
1-computable numberings, is recursively

isomorphic to first-order arithmetic.
Moreover, the fragment Π5-Th(RΣ0

1
) is hereditarily undecidable.
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Proof of Theorem 2: Outline

(1) Recall the example from [Ershov 1977]: If A ( B are c.e.
sets, then the Rogers Σ0

1-semilattice RΣ0
1
({A,B}) is isomorphic to

the semilattice of c.e. m-degrees Rm.

This immediately gives a first-order interpretation (with
parameters!) of Rm inside RΣ0

1
.

(2) In order to eliminate the parameters from the interpretation,
we employ the following simple fact: Every minimal element inside
RΣ0

1
is induced by a numbering of a one-element family. Thus, one

can also provide a first-order definition for the elements induced by
numberings of two-element families.

Recall than Nies (1994) proved that the theory Th(Rm) is
recursively isomorphic to first-order arithmetic. Since Rm is
first-order interpretable without parameters inside RΣ0

1
, we deduce

that Th(RΣ0
1
) ≡1 Th(Rm).
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The complexity of Th(R)

Recall that R is the semilattice of all numberings.

Theorem 3 (B., Mustafa, and Yamaleev 2019)

The theory Th(R) is recursively isomorphic to second-order
arithmetic. The fragment Π5-Th(R) is hereditarily undecidable.

The proof is similar to the previous one, modulo the following
modification: We use that the elementary theory of the semilattice
of all m-degrees Dm is recursively isomorphic to second-order
arithmetic [Nerode and Shore 1980].
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The complexity of Th(RΣ0
α
)

We also obtain a partial result on the semilattice of all
Σ0
α-computable numberings.

Proposition (B., Mustafa, and Yamaleev 2019)

Let α be a computable successor ordinal such that α ≥ 2. The
elementary theory of the semilattice of Σ0

α m-degrees is 1-reducible
to Th(RΣ0

α
).
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Open Question 2

Let α be a non-zero computable ordinal. Is it true that for any
non-trivial Rogers Σ0

α-semilattices U and V, the theories Th(U)
and Th(V) are recursively isomorphic?

Note that the following question is still open:
Is it true that for any non-trivial Rogers Σ0

1-semilattice U , the
theory Th(U) is undecidable?
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In the setting of analytical numberings, the following problem
seems to be of interest:

Open Question 3

Study the connections between additional set-theoretic
assumptions and the results on Π1

n-computable numberings.

So far, there are only few results in this direction.
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Friedberg numberings

A numbering ν is Friedberg if for any natural numbers m 6= n,
we have ν(m) 6= ν(n).

Theorem (Owings 1970)

The family of all Π1
1 sets has no Π1

1-computable Friedberg
numbering.

Theorem (Dorzhieva)

(a) The family of all Π1
2 sets has no Π1

2-computable Friedberg
numbering.

(b) Assume V = L. For any natural number n ≥ 3, the family of
all Π1

n sets has no Π1
n-computable Friedberg numbering.
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II. Different kinds of reducibility between numberings:

(a) Relativized reducibility.

(b) bm-Reducibility.



Relativized reducibility

Let d be a Turing degree.

A numbering ν is d-reducible to a numbering µ, denoted by
ν ≤d µ, if there is a d-computable function f(x) such that
ν(n) = µ(f(n)) for all n.

For a Γ-computable family S, one can introduce an upper
semilattice

Rd
Γ(S) := (ComΓ(S);≤d,⊕)/≡d .
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0(n)-reducibility

In the series of papers (2003), Badaev, Goncharov, Podzorov,

and Sorbi obtained several results on semilattices R0(n)

Σ0
m

(S), where
n,m ∈ ω: in particular,

Theorem (Badaev, Goncharov, and Sorbi 2003)

Let m be a non-zero natural number. Consider the following two
Σ0
m-computable families:

I F is the family of all finite sets,

I S is the family of all Σ0
m sets.

Then for any i < m, the semilattices R0(i)

Σ0
m

(F ) and R0(i)

Σ0
m

(S) are
not isomorphic.
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Theorem (Goncharov 1982)

Let S be a Σ0
1-computable family. Suppose that S has two

Σ0
1-computable Friedberg numberings ν and µ such that ν 6≡ µ

and ν ≡0′ µ. Then S has infinitely many pairwise non-equivalent,
Σ0

1-computable Friedberg numberings.

This result has a counterpart in computable structure theory:

Theorem (Goncharov 1982)

Let A be a computable structure. Suppose that B is a computable
copy of A such that B 6∼=∆0

1
A and B ∼=∆0

2
A. Then A has infinite

computable dimension.
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bm-Reducibility
Maslova (1979) introduced a bounded version of m-reducibility

on sets:
Let A and B be subsets of N. Then A ≤bm B if there is a total

computable function g(x) such that:

(a) n ∈ A iff g(n) ∈ B, for all n ∈ N;

(b) for any k ∈ N, the preimage g−1(k) is a finite set.

Following her approach, we say that a numbering ν is
bm-reducible to a numbering µ, denoted by ν ≤bm µ, if there is a
total computable function f(x) with the following properties:

1. ν(n) = µ(f(n)), for all n ∈ N;

2. for any k ∈ N, the set f−1(k) is finite.

Consider a Γ-computable family S. In a natural way, the
reducibility ≤bm gives rise to the corresponding Rogers
bm-semilattice:

RbmΓ (S) := (ComΓ(S);≤bm,⊕)/≡bm .
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Cardinalities of bm-semilattices

Recall the result of Khutoretskii (1971):
For a Σ0

1-computable family S, the semilattice RΣ0
1
(S) is either

one-element, or infinite.

This result does not extend to the case of ≤bm:

Theorem 4 (B., Mustafa, and Ospichev)

I Let S be a finite Σ0
1-computable family with precisely n ≥ 2

elements. Then the cardinality of the Rogers bm-semilattice
Rbm

Σ0
1
(S) is either equal to 2n − 1, or countably infinite. Both

these cases can be realized.

I For any non-zero natural number n, there is an infinite
Σ0

1-computable family T such that the cardinality of the
bm-semilattice Rbm

Σ0
1
(T ) is equal to 2n.
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There is a bm-lattice

Recall the result of Selivanov (1976):
Let S be a Σ0

1-computable family. If the structure RΣ0
1
(S) is

infinite, then it is not a lattice.

Again, this cannot be extended to the bm-case:

Proposition (B., Mustafa, and Ospichev)

Consider a Σ0
1-computable family S := {{k} : k ∈ N}. Then the

structure Rbm
Σ0

1
(S) is isomorphic to the lattice of all Π0

2 sets (under

inclusion).
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Nevertheless, our results above do not transfer to further levels
of the hyperarithmetical hierarchy:

Proposition (B., Mustafa, and Ospichev)

Let α ≥ 2 be a computable successor ordinal. Let S be a
Σ0
α-computable family such that S contains at least two elements.

Then the bm-semilattice RbmΣ0
α
(S) is infinite, and it is not a lattice.

Open Question 4

Provide a complete characterization for possible cardinalities of
bm-semilattices Rbm

Σ0
1
(S).
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