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Abstract

Hilbert’s Tenth Problem (HTP) asked for an effective algorithm to
test whether an arbitrary polynomial equation

P(x1, . . . , xn) = 0

(with integer coefficients) has solutions over the ring Z of the
integers. This was finally solved by Matiyasevich in 1970 negatively.
In this talk we introduce the speaker’s further results on HTP. In
particular, we present a sketch of the proof of the speaker’s main
result that there is no effective algorithm to determine whether an
arbitrary polynomial equation P(x1, . . . , x11) = 0 (with integer
coefficients) in 11 unknowns has integral solutions or not.
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My logic experience

David Hilbert−→ Paul Bernays−→Shawkwei Moh−→Zhi-Wei Sun

In 1983, I entered Department of Mathematics, Nanjing University.
My speciality is Mathematical Logic. During 1987-1992, I was a
graduate student at Nanjing University.

In 1992, I got my PhD under the supervision of Prof. Shawkwei
Moh with the thesis Further Results on Hilbert’s Tenth Problem.

Since July 1992 I have worked as a teacher at Nanjing University.
In 1994 I turned my interest from Mathematical Logic to Number
Theory (especially Combinatorial Number Theory).
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Part I. Hilbert’s Tenth Problem and its Solution
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Hilbert’s Tenth Problem

In 1900, at the Paris conference of ICM, D. Hilbert presented 23
famous mathematical problems. He formulated his tenth problem
as follows:

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a finite
number of operations whether the equation is solvable in rational
integers.

In modern language, Hilbert’s Tenth Problem (HTP) asked for an
effective algorithm to test whether an arbitrary polynomial equation

P(z1, . . . , zn) = 0

(with integer coefficients) has solutions over the ring Z of the
integers.

However, at that time the exact meaning of algorithm was not
known.
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Partial recursive functions

Let N = {0, 1, 2, . . .}.
Zero Function: O(x) = 0 (for all x ∈ N).
Successor Function: S(x) = x + 1.
Projection Function: Ink(x1, . . . , xn) = xk (1 6 k 6 n)

µ-operator:

f (x1, . . . , xn) = µy(g(x1, . . . , xn, y) = 0)

means that f (x1, . . . , xn) is the least natural number y such that
g(x1, . . . , xn, y) = 0. If g(x1, . . . , xn, y) 6= 0 for all y ∈ N, then
f (x1, . . . , xn) is undefined.

Partial recursive functions are the basic functions O(x),S(x), Ink
and those obtained from the basic functions by applying
composition and µ-operator a finite number of times.

Partial recursive functions coincide with the Turing computable
functions via the Turing machine which manipulates symbols on a
strip of tape according to a table of rules (i.e., a program).
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r.e. sets

Church’s Thesis (1936). If a function f into N with natural
number variables is effectively computable by intuition, then it
must be a partial recursive function (or a Turing computable
function).

A set A ⊆ N is said to be r.e. (recursively enumerable) set or
semi-computable if there is a partial recursive function f (x) such
that

f (x) =

{
1 if x ∈ A,

undefined if x ∈ N \ A.

A set A ⊆ N is recursive if and only if both A and N \ A are r.e.
sets.

There are nonrecursive r.e. subsets of N such as
K = {x ∈ N : ϕx(x) is defined}, where ϕn denotes the n-th
partial recursive function of one variable.

A problem or a set is decidable, if and only if its characteristic
function is Turing computable (or recursive).
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Diophantine relations and Diophantine sets

A relation R(a1, . . . , am) with a1, . . . , am ∈ N is said to be
Diophantine if there is a polynomial P(t1, . . . , tm, x1, . . . , xn) with
integer coefficients such that

R(a1, . . . , am) ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[P(a1, . . . , am, x1, . . . , xn) = 0].

(Throughout this paper, variables always range over Z.)

A set A ⊆ N is Diophantine if and only if the predicate a ∈ A is
Diophantine.

It is easy to see that any Diophantine set is an r.e. set.
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Davis Daring Hypothesis

In 1944 E. L. Post thought that HTP begs for an unsolvability
proof, i.e., HTP might be undecidable.

In 1949 Martin Davis used Gödel’s coding idea to obtain that any
r.e. set A ⊆ N has the following Davis normal form

a ∈ A ⇐⇒ ∃x > 0∀0 6 y 6 x∃z1 > 0 . . . ∃zn > 0

[P(a, x , y , z1, . . . , zn) = 0],

where a is a natural number and P is a polynomial with integer
coefficients.

Davis Daring Hypothesis. Any r.e. set A ⊆ N is Diophantine.

Under this hypothesis, for the nonrecursive r.e. set
K = {x ∈ N : x ∈ Dom(ϕx)} there is a polynomial
P(x , x1, . . . , xn) such that for any a ∈ N we have

a ∈ K ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[P(a, x1, . . . , xn) = 0].

Thus Davis Daring Hypothesis implies that HTP over N is
undecidable.
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Eliminate bounded universal quantifier
Theorem (M. Davis, H. Putnam and J. Robinson [Annals of
Math. 1961]) Let b ∈ Z+ = {1, 2, 3, . . .}, P(y , x1, . . . , xm)
∈ Z[y , x1, . . . , xm], and B(b,w) = P∗(b,w , . . . ,w) with
P∗(y , x1, . . . , xm) obtained by replacing each coefficient in
P(y , x1, . . . , xm) by its absolute value. Then

∀0 6 y < b∃x1 > 0 . . . ∃xm > 0[P(y , x1, . . . , xm) = 0]

⇐⇒ there exist q,w , z1, . . . , zm ∈ N such that

q ≡ −1 (mod b!(b + w + B(b,w))!), and(
q

b

)
divides

(
z1
w

)
, . . .

(
zm
w

)
and P(q, z1, . . . , zm).

Remark. A system of finitely many Diophantine equations is
equivalent to a single Diophantine equation. In fact, if
Pi (z1, . . . , zn) ∈ Z[z1, . . . , zn] for all i = 1, . . . , k, then

P1(z1, . . . , zn) = 0 & . . . & Pk(z1, . . . , zn) = 0

⇐⇒ P2
1 (z1, . . . , zn) + . . .+ P2

k (z1, . . . , zn) = 0.
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Two key steps to solve HTP
Based on the above theorem, M. Davis, H. Putnam and J.
Robinson [Ann. of Math. 1961] successfully showed that any r.e.
set is exponential Diophantine, that is, any r.e. set A has the
exponential Diophantine representation

a ∈ A ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[P(a, x1, . . . , xn, 2
x1 , . . . , 2xn) = 0],

where P is a polynomial with integer coefficients.

Recall that the Fibonacci sequence (Fn)n>0 defined by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n = 1, 2, 3, . . .)

increases exponentially. In 1970 Yu. Matiyasevich took the last
step to show ingeniously that the relation y = F2x (with x , y ∈ N)
is Diophantine! It follows that the exponential relation a = bc

(with a, b, c ∈ N, b > 1 and c > 0) is Diophantine, i.e. there exists
a polynomial P(a, b, c , x1, . . . , xn) with integer coefficients such
that

a = bc ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[P(a, b, c , x1, . . . , xn) = 0].
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Matjiasevich’s theorem

Matiyasevich’s surprising result, together with the important work
of Davis, Putnam and Robinson in 1961, leads to the following
great result.

Matiyasevich’s Theorem (1970). Any r.e. set A ⊆ N is
Diophantine.

As some r.e. sets are not recursive, it follows that there is no
algorithm to decide whether an arbitrary polynomial equation

P(x1, . . . , xn) = 0

(with integer coefficients) has solutions x1, . . . , xn ∈ N.
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The negative solution to HTP

J. Robinson’s Simple Observation:

∃z1 . . . ∃zn[P(z1, . . . , zn) = 0]

⇐⇒ ∃x1 > 0 . . . xn > 0

[ ∏
ε1,...,εn∈{±1}

P(ε1x1, . . . , εnxn) = 0

]
.

On the other hand, by Lagrange’s four-square theorem (each
m ∈ N can be written as the sum of four squares), we have

∃x1 > 0 . . . ∃xn > 0[P(x1, . . . , xn) = 0]

⇐⇒ ∃u1∃v1∃y1∃z1 . . . ∃un∃vn∃yn∃zn

[P(u2
1 + v2

1 + y2
1 + z2

1 , . . . , u
2
n + v2

n + y2
n + z2

n ) = 0]

Therefore, the negative solution of HTP (over Z) is equivalent to
the negative solution of HTP (over N).

Thus Matiyasevich solved HTP negatively!
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Part II. Reduction of Natural Number Unknowns
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Small ν with ∃ν over N undecidable

For a set S ⊆ Z we let ∃n over S denote the set of formulas

∃x1 ∈ S . . . ∃xn ∈ S [P(x1, . . . , xn) = 0]

with P(x1, . . . , xn) ∈ Z[x1, . . . , xn].

Any nonrecursive r.e. set A has a Diophantine representation:

a ∈ A ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[P(x1, . . . , xn) = 0].

It is interesting to find the least ν ∈ Z+ = {1, 2, 3, . . .} such that
∃ν over N is undecidable.

ν < 200 (Matiyasevich, Summer of 1970)
ν 6 35 (J. Robinson, 1970)
ν 6 24 (Matiyasevich and Robinson, 1970)
ν 6 14 (Matiyasevich and Robinson, 1970)
ν 6 13 (Matiyasevich and Robinson, 1973 [Acta Arith. 27(1975)])
ν 6 9 (Matiyasevich, 1975; details in Jones [J. Symbolic Logic,
1982])
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Matiyasevich-Robinson’s Relation-Combining Theorem

Let � denote the set of all integer squares.

Matiyasevich-Robinson’s Relation-Combining Theorem [Acta
Arith. 27(1975)] Let A1, . . . ,Ak and R,S ,T be integers with
S 6= 0. Then

A1 ∈ � ∧ . . . ∧ Ak ∈ � ∧ S | T ∧ R > 0

⇐⇒ ∃n > 0[Mk(A1, . . . ,Ak ,S ,T ,R, n) = 0],

where Mk(x1, . . . , xk ,w , x , y , z) is a polynomial with integer
coefficients.

Matiyasevich-Robinson Relation-Combining Theorem is an
important tool to reduce the number of unknowns.
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Coding idea of Matiyasevich and Robinson (1975)
Let b ∈ N, δ ∈ Z+, and

P(z0, . . . , zν) =
∑

i0,...,iν∈N
i0+...+iν6δ

ai0,...,iνz i0
0 · · · z

iν
ν .

B = 2δ!(1 + bδ)

(
1 +

∑
i0+...+iν6δ

a2i0,...,iν

)
+ 1,

D(x) = x (δ+1)ν+2
+

∑
i0+...+iν6δ

ci0,...,iνai0,...,iνx (δ+1)ν+1−
∑ν

s=0 is(δ+1)s

with ci0,...,iν = i0! . . . iν!(δ − i0 − . . .− iν)!. Then

P(z0, . . . , zν) = 0 for some z0, . . . , zν ∈ [0, b]

⇐⇒ there is a number c of the form 1 +
ν∑

i=0

ciB
(δ+1)i with ci ∈ [0, b]

such that the coefficient of x (δ+1)ν+1
in
(
1 +

ν∑
i=0

cix
(δ+1)i

)δ
D(x)

is zero. 17 / 48



Matiyasevich’s idea to use binary representations

For a, b ∈ N written in base p with p prime, let τp(a, b) denote the
number of carries occurring in the addition of a and b. Kummer
noted that τp(a, b) = ordp

(a+b
a

)
.

Let b,B ∈ 2 ↑= {2n : n ∈ N} with b 6 B. Let δ, ν ∈ Z+. For

c =
∑(δ+1)ν

j=0 cjB
j with cj ∈ [0,B), and M =

∑(δ+1)ν

j=0 mjB
j with

mj =

{
B − b if j = (δ + 1)s for some s = 1, . . . , k,

B − 1 otherwise,

τ2(c ,M) = 0 ⇐⇒ τ2(cj ,mj) = 0 for all j = 0, . . . , (δ + 1)ν

⇐⇒ c =
ν∑

i=1

ziB
(δ+1)i for some z1, . . . , zk ∈ [0, b)

If N ∈ 2 ↑ and S ,T ∈ [0,N), then

τ2(S ,T ) = 0 ⇐⇒ N2 |
(

2R

R

)
where R = (N − 1)((S + T + 1)N + T + 1). 18 / 48



The 9 Unknowns Theorem

The above ideas, together with some other works in the 1975
paper of Matiyasevich and Robinson, led Matiyasevich to obtain
the following celebrated theorem.

Matiyasevich’s 9 Unknowns Theorem: ∃9 over N is undecidable!

The detailed proof of this theorem appeared in Jones [J. Symbolic
Logic, 1982].

Up to now, no one has shown that ∃ν over N is undecidable for
some ν < 9, although A. Baker, Matiyasevich and Robinson all
believed that ∃3 over N might be undecidable.
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Part III. Find small ν with ∃ν over Z undecidable
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∃ over Z is decidable

Matiyasevich and Robinson [Acta Arith. 27(1975)]: If
a0, a1, . . . , an and z are integers with a0z 6= 0 and∑n

i=0 aiz
n−i = 0, then

|z |n 6 |a0zn| 6
n∑

i=1

|ai ||z |n−i 6
n∑

i=1

|ai ||z |n−1

and hence

|z | 6
n∑

i=1

|ai |.

Thus ∃ over N and ∃ over Z are decidable (in polynomial time).

It is not known whether ∃2 over Z is decidable. But A. Baker
proved in 1968 that if P(x , y) ∈ Z[x , y ] is homogenous, irreducible
and of degree at least three then for any m ∈ Z there is an effective
algorithm to determine whether P(x , y) = m for some x , y ∈ Z.
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Relative results
For any m ∈ Z, by Lagrange’s four-square theorem

m > 0 ⇐⇒ ∃z1∃z2∃z3∃z4[m = z2
1 + z2

2 + z2
3 + z2

4 ].

Thus

∃n over N is undecidable⇒ ∃4n over Z is undecidable.

By the Gauss-Legendre theorem on sums of three squares,

N \ {x2 + y2 + z2 : x , y , z ∈ Z} = {4k(8l + 7) : k , l ∈ N}.

If n ∈ N, then 4n + 1 = (2x)2 + (2y)2 + (2z + 1)2 for some
x , y , z ∈ Z, and hence n = x2 + y2 + z2 + z . Thus, for any m ∈ Z,

m > 0 ⇐⇒ ∃x∃y∃z [m = x2 + y2 + z2 + z ].

It follows that

∃n over N is undecidable⇒ ∃3n over Z is undecidable.

Thus ∃27 over Z is undecidable by the 9 unknowns theorem, as
pointed out by S.P. Tung in [Japan J. Math., 11(1985)].
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A new relation-combining theorem

Tung (1985) asked whether ∃ν over Z is undecidable for some
ν < 27.

New Relation-Combining Theorem (Z.-W. Sun [Z. Math. Logik
Grundlag. Math. 38(1992)]): Let A1, . . . ,Ak ,B,C1, . . . ,Cn,D,E
be integers with D 6= 0. Then

A1, . . . ,Ak ∈ � ∧ B 6= 0 ∧ C1, . . . ,Cn > 0 ∧ D | E

⇐⇒ ∃z1 . . . ∃zn+2[P(A1, . . . ,Ak ,B,C1, . . . ,Cn,D,E , z1, . . . , zn+2) = 0],

where P is a suitable polynomial with integer coefficients.

This implies that

∃n over N is undecidable⇒ ∃2n+2 over Z is undecidable.

So ∃20 over Z is undecidable by the 9 unknowns theorem.
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∃11 over Z is undecidable
In 1992, I announced that ∃11 over Z is undecidable.

To achieve this goal, unlike others I did not simply use the relative
result, instead I adapted the deep proof of the 9 unknowns
theorem and made suitable variants so that we can use integer
variables instead of natural number variables.

My starting point is the use of Lucas sequences with integer
indices instead of the usual natural number indices. I published
this initial step in Sci. China Ser. A 35(1992).

The whole proof of the undecidability of ∃11 over Z is very
sophisticated. It appeared in my PhD thesis in 1992. During
1992-2016, despite that many mathematicians (including Davis
and Matiyasevich) wanted to see my detailed proof, I did not write
an English version of that, since I was busy with new discoveries.

After 25 years had passed, in 2017 I finally wrote an English paper
containing the undecidability of ∃11 over Z as well as my new
discoveries related to HTP. The preprint is publicly available from
http://arxiv.org/abs/1704.03504 24 / 48



Lucas sequences

Let A and B be integers. The usual Lucas sequence
un = un(A,B) (n = 0, 1, 2, . . .) and its companion
vn = vn(A,B) (n = 0, 1, 2, . . .) are defined as follows:

u0 = 0, u1 = 1, and un+1 = Aun − Bun−1 (n = 1, 2, 3, . . .);

and

v0 = 2, v1 = A, and vn+1 = Avn − Bvn−1 (n = 1, 2, 3, . . .).

Note that

un(2, 1) = n, un(1,−1) = Fn, and un(3, 1) = F2n.

Let

α =
A +
√

∆

2
and β =

A−
√

∆

2

be the two roots of the quadratic equation x2 − Ax + B = 0 where
∆ = A2 − 4B. It is well known that for any n ∈ N we have

(α− β)un = αn − βn, vn = αn + βn and v2
n −∆u2

n = 4Bn.
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Pell’s equation

Let d ∈ Z+ \�. It is well-known that the Pell equation

y2 − dx2 = 1

has infinitely many integral solutions. (Note that x = 0 and
y = ±1 are trivial solutions.) Moreover,

{y +
√

dx : x , y ∈ Z and y2 − dx2 = 1}

is a multiplicative cyclic group.

For any integer A > 2, the solutions of the Pell equation

y2 − (A2 − 1)x2 = 1 (x , y ∈ N)

are given by x = un(2A, 1) and y = vn(2A, 1) with n ∈ N. J.
Robinson and his followers wrote un(2A, 1) and vn(2A, 1) as ψn(A)
and χn(A) respectively.

To unify Matiyasevich’s use of F2n = un(3, 1) and Robinson’s use
of ψn(A) = un(2A, 1), we deal with Lucas sequences (un(A, 1))n>0.
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On un(A, 1) with n ∈ Z
We extend the sequences un = un(A, 1) and vn = vn(A, 1) to
integer indices by letting

u0 = 0, u1 = 1, and un−1 + un+1 = Aun for all n ∈ Z,

and

v0 = 2, v1 = A, and vn−1 + vn+1 = Avn for all n ∈ Z.

It is easy to see that

u−n(A, 1) = −un(A, 1) = (−1)nun(−A, 1)

and v−n(A, 1) = vn(A, 1) = (−1)nvn(−A, 1) for all n ∈ Z.

Lemma. Let A,X ∈ Z. Then

(A2 − 4)X 2 + 4 ∈ � ⇐⇒ X = um(A, 1) for some m ∈ Z.

Remark. For n ∈ N and A > 2, it is easy to show that

(A− 1)n 6 un+1(A, 1) 6 An.
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Diophantine representation of C = uB(A, 1) with
unknowns arbitrarily large

Matiyasevi c and Robinson (1975) showed that for A > 1 and
B,C > 0 there is a Diophantine representation of C = uB(2A, 1)
only involving three natural number variables.

Lemma (Sun [Sci. China Ser. A 35(1992)]). Let A,B,C ∈ Z with
A > 1 and B > 0. Then

C = uB(A, 1) ⇐⇒ C > B ∧ ∃x > 0∃y > 0(DFI ∈ �)

⇐⇒ ∃x , y , z > 0[DFI (C − B + 1)2 = (z − DFI (C − B + 1))2],

where

D = (A2 − 4)C 2 + 4, E = C 2Dx , F = 4(A2 − 4)E 2 + 1,

G = 1 + CDF − 2(A + 2)(A− 2)2E 2, H = C + BF + (2y − 1)CF ,

I = (G 2 − 1)H2 + 1.

Moreover, if C = uB(A, 1) with B > 0, then for any Z ∈ Z+ there
are integers x > Z and y > Z with DFI ∈ �.
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Diophantine representation of C = uB(A, 1) with integer
unknowns

Clearly C > B ⇐⇒ ∃x > 0(C = B + x). However, if we use
integer variables, we need three variables:

C > B ⇐⇒ ∃x∃y∃z [C = B + x2 + y2 + z2 + z ].

Thus, to save the number of integer variables involved, we
should try to avoid inequalities.

Note that

uB(A, 1) ≡ uB(2, 1) = B (mod A− 2).

Lemma (Sun [Sci. China Ser. A 35(1992)]). Let A,B,C ∈ Z with
1 < |B| < |A|/2− 1. Then

C = uB(A, 1) ⇐⇒ (A− 2 | C − B) ∧ ∃x 6= 0∃y(DFI ∈ �),

where D,F , I are defined as before.
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Diophantine representation of W = V B with integer
unknowns

J. Robinson showed that W = V B (with V > 1 and B,W > 0) if
and only if there is an integer A > max{V 3B ,W B} such that

(V 2 − 1)W uB(2A, 1) ≡ V (W 2 − 1) (mod 2AV − V 2 − 1).

Lemma (Sun [Sci. China Ser. A 35(1992)]). Let B,V ,W be
integers with B > 0 and |V | > 1. Then W = V B if and only if
there are A,C ∈ Z for which |A| > max{V 4B ,W 4}, C = uB(A, 1)
and

(V 2 − 1)WC ≡ V (W 2 − 1) (mod AV − V 2 − 1).

Remark. A, V and W in this lemma are not necessarily positive,
they might be negative.
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The first auxiliary theorem

Theorem 1 (Sun, arXiv:1704.03504). Let A ⊆ N be a Diophantine
set, and let p be a prime. Then, for each a ∈ N, we have

a ∈ A ⇒ ∀Z > 0∃f ≥ Z∃g ∈ [b, C)

(
b ∈ �∧b ∈ p ↑ ∧Y |

(
pX

X

))
and

∃f 6= 0∃g ∈ [0, 2C)

(
b ∈ � ∧ b ∈ p ↑ ∧Y |

(
pX

X

))
⇒ a ∈ A,

where

p ↑:= {pk : k = 0, 1, 2, . . .} and b := 1 + (p2 − 1)(ap + 1)f ,

C = pα1pbα2 for some α1, α2 ∈ Z+ only depending on A, and X
and Y are suitable polynomials in Z[a, f , g ] such that if a ∈ N,
f ∈ Z \ {0}, b ∈ � and 0 ≤ g < 2C then

p + 1 | X , X > 3b and Y > max{b, p4p}.

Remark. Clearly, b ∈ � ∧ f 6= 0⇒ f > 0 ∧ b > a ∧ p2 − 1 | b − 1.
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The second auxiliary theorem

Theorem 2 (Sun, arXiv:1704.03504). Let p be a prime, and let
b ∈ p ↑ and g ∈ Z+. Let P,Q,X ,Y be integers with P > Q > 0
and X ,Y > b. Suppose that Y |

(PX
QX

)
. Then there are integers

h, k , l ,w , x , y > b for which

DFI ∈ �, (U2PV 2−4)K 2+4 ∈ �, pA−p2−1 | (p2−1)WC−p(W 2−1),

bw = pB and 16g2(C − KL)2 < K 2,

where

L := lY , U := PLX , V := 4gwY ,

W := bw , K := QX + 1 + k(UPV − 2),

A := UQ(V + 1), B := PX + 1, C := B + (A− 2)h,

and D,F , I are as before.

Remark. We actually take C = uB(A, 1), K = uQX+1(UPV , 1),
L = b(V + 1)PX/V QX c ≡

(PX
QX

)
(mod V ).
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The third auxiliary theorem

Theorem 3 (Sun, arXiv:1704.03504). Let p be a prime, and let
b ∈ N and g ∈ Z+. Let P,Q,X ,Y be integers with

P > Q > 0, X > 3b, and Y > max{b, p4P}.

Suppose that there are integers h, k , l ,w , x , y with lx 6= 0 such that

DFI ∈ �, (U2PV 2−4)K 2+4 ∈ �, pA−p2−1 | (p2−1)WC−p(W 2−1),

and
4(C − KL)2 < K 2,

where we adopt previous notations. Then

b ∈ p ↑ and Y |
(

PX

QX

)
.

Remark. This theorem involving integer variables plays a central
role in our proof of the undecidability of ∃11 over Z.
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Main Theorem

Theorem (Sun, arXiv:1704.03504). Let A ⊆ N be an r.e. set.

(i) There is a polynomial PA(z0, z1, . . . , z9) with integer
coefficients such that for any a ∈ N we have

∃z1 . . . ∃z8∃z9 > 0[PA(a, z1, . . . , z9) = 0] =⇒ a ∈ A,

and

a ∈ A =⇒ ∀Z > 0∃z1 > Z . . . ∃z9 > Z [PA(a, z1, . . . , z9) = 0].

(ii) There is a polynomial QA(z0, z1, . . . , z10) with integer
coefficients such that for any a ∈ N we have

a ∈ A ⇐⇒ ∃z1 . . . ∃z9∃z10 6= 0[QA(a, z1, . . . , z10) = 0].
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Two Lemmas

Lemma 1. For any A1, . . . ,Ak ,S ,T ∈ Z with S 6= 0, we have

A1 ∈ � ∧ · · · ∧ Ak ∈ � ∧ S | T ⇐⇒ ∃z [Hk(A1, . . . ,Ak ,S ,T , z) = 0],

where Hk is a suitable polynomial with integer coefficients.

Remark. This is motivated by Matiyasevich-Robinson’s
Relation-Combining Theorem. Note that z is an integer variable.

Lemma 2 (Sun, arXiv:1704.03504). Let m ∈ Z. Then

m > 0 ⇐⇒ ∃x 6= 0[(3m − 1)x2 + 1 ∈ �].

Remark. This is easy since if m ∈ Z+ then 3m − 1 6∈ � and hence
the Pell equation

y2 − (3m − 1)x2 = 1

has infinitely many integral solutions.
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A corollary

As some r.e. sets are not Diophantine, the Main Theorem has the
following consequence.

Corollary. (i) There is no algorithm to determine for any
P(z1, . . . , z9) ∈ Z[z1, . . . , z9] whether the equation

P(z0, . . . , z9) = 0

has integral solutions with z9 > 0 (or z1 + . . .+ z9 > 0).

(ii) There is no algorithm to determine for any
Q(z1, . . . , z10) ∈ Z[z1, . . . , z9] whether the equation

Q(z0, . . . , z10) = 0

has integral solutions with z10 6= 0 (or z1 + . . .+ z10 6= 0).

Remark. Let z ′9 = z9 − z1 − . . .− z8. Then

P(z1, . . . , z8, z
′
9) = 0 with z1 + . . .+ z8 + z ′9 > 0

⇐⇒ P(z1, . . . , z8, z9) = 0 with z9 > 0.
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∃11 over Z is undecidable

Recall that

m > 0 ⇐⇒ ∃x∃y∃z [m = x2 + y2 + z2 + z ].

So,

∃z1 . . . ∃z8∃z9 > 0[P(z1, . . . , z8, z9) = 0]

⇐⇒ ∃z1 . . . ∃z11[P(z1, . . . , z8, z
2
9 + z2

10 + z2
11 + z11) = 0].

Similarly, in view of S. P. Tung’s observation (1985)

m 6= 0 ⇐⇒ ∃x∃y [m = (2x + 1)(2y + 1)],

we have

∃z1 . . . ∃z9∃z10 6= 0[Q(z1, . . . , z9, z10) = 0]

⇐⇒ ∃z1 . . . ∃z11[Q(z1, . . . , z9, (2z10 + 1)(3z11 + 1)) = 0].

Therefore, both parts of the Main Theorem implies the
undecidability of ∃11 over Z.
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Quantifier prefixes over Diophantine equations
In 1987 S.P. Tung proved for each n ∈ Z+ that ∀n∃ over Z is
co-NP-complete. He also showed that ∀27∃2 over Z is undecidable,
and asked whether 27 here can be replaced by a smaller number.
Corollary 2 of us tells that ∀10∃2 over Z and ∀9∃3 over Z are
undecidable.

In 1975 Matiyasevich and Robinson showed that ∃2∀∃ with ∀
bounded is undecidable over N. In 1981 Jones obtained the
decidability of ∀∃ over N as well as some other undecidable results
over N.

In my PhD thesis in 1992, I also proved that

∀∃6, ∀2∃4, ∀∃∀∃3, ∀∃∀3∃2, ∀2∃∀2∃2, ∀∃2∀2∃2,
∃2∀∃3, ∃2∀3∃2, ∃∀∃∀2∃2, ∃∀∃4, ∃∀2∃3, ∃∀5∃2

over Z are undecidable, and that

∃2∀∃3, ∃2∀2∃2, ∃∀∃∀∃2, ∃∀∃4, ∃∀2∃3, ∃∀4∃2

with ∀ bounded by polynomials are undecidable over Z.
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Part IV. Undecidable results related to polygonal numbers
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Polygonal numbers

Recall that triangular numbers have the form Tx = x(x + 1)/2
with x ∈ Z. Note that T−1−x = Tx .

Polygonal numbers are nonnegative integers constructed
geometrically from the regular polygons. For m = 3, 4, 5, . . ., the
m-gonal numbers are given by

pm(n) = (m − 2)

(
n

2

)
+ n (n = 0, 1, 2, . . .).

Clearly

p3(n) = Tn, p4(n) = n2, p5(n) =
3n2 − n

2
, p6(n) = 2n2−n = T2n−1.

The larger m is, the more sparse m-gonal numbers are.

Fermat claimed that for each m = 3, 4, . . . any n ∈ N can be
written as the sum of m polygonal numbers of order m. This was
proved by Lagrange for m = 4, Gauss for m = 3, and Cauchy for
m > 5.
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Generalized pentagonal numbers and octagonal numbers

For m = 5, 6, . . . those pm(x) with x ∈ Z are called generalized
polygonal numbers of order m. We set

Tri = {Tx : x ∈ Z}, Pen =

{
p5(x) =

x(3x − 1)

2
: x ∈ Z

}
and

Octa = {p8(x) = x(3x − 2) : x ∈ Z}.
R. K. Guy [Amer. Math. Monthly 101(1994)]: Each n ∈ N is the
sum of three elements of Pen.

Z.-W. Sun [J. Number Theory, 162(2016)]: Any n ∈ N is the sum
of four elements of Octa. (This is quite similar to Lagrange’s
four-square theorem.)

Clearly,

x =
x(x + 1)

2
− x(x − 1)

2
= Tx − T−x ,

x =
x(3x + 1)

2
− x(3x − 1)

2
= p5(−x)− p5(x).
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A lemma on squares and generalized octagonal numbers

Lemma (Sun, arXiv:1704.03504). (i) Any integer can be written
as 2δ(x2 − y2) with δ ∈ {0, 1} and x , y ∈ Z. Also, each integer
can be written as 2δ(p8(x)− p8(y)) with δ ∈ {0, 1} and x , y ∈ Z.

(ii) Any positive odd integer can be written as x2 + y2 + 2z2 with
x , y , z ∈ Z. Also, each positive odd integer can be written as
p8(x) + p8(y) + 2p8(z) with x , y , z ∈ Z.

The first assertion in part (ii) is known.

Let n ∈ Z+. By Lemma 4.3(ii) of Sun [J. Number Theory,
162(2016)], 6n + 1 = x2 + y2 + 2z2 for some x , y , z ∈ Z with
3 - xyz . (This is a nontrivial result!) Without loss of generality we
may assume that x = 3u − 1, y = 3v − 1 and z = 3w − 1 for some
u, v ,w ∈ Z. Thus

6n + 1 =(3u − 1)2 + (3v − 1)2 + 2(3w − 1)2

=(3p8(u) + 1) + (3p8(v) + 1) + 2(3p8(w) + 1)

and hence 2n − 1 = p8(u) + p8(v) + 2p8(w).
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Undecidable results related to Tri, �, Pen and Octa

Theorem (Z. W. Sun, arXiv:1704.03504). Let A be any r.e.
subset of N. Then there is a polynomial P4(z0, z1, . . . , z17) with
integer coefficients such that for any a ∈ N we have

a ∈ A ⇐⇒ ∃z1 ∈ � . . . ∃z17 ∈ �[P4(a, z1, . . . , z17) = 0].

Also, there are polynomials

P3(z0, z1, . . . , z18), P5(z0, z1, . . . , z18), P8(z0, z1, . . . , z18)

with integer coefficients such that for any a ∈ N we have

a ∈ A ⇐⇒ ∃z1 ∈ Tri . . . ∃z18 ∈ Tri[P3(a, z1, . . . , z18) = 0]

⇐⇒ ∃z1 ∈ Pen . . . ∃z18 ∈ Pen[P5(a, z1, . . . , z18) = 0]

⇐⇒ ∃z1 ∈ Octa . . . ∃z18 ∈ Octa[P8(a, z1, . . . , z18) = 0],

Corollary. ∃17 over �, ∃18 over Tri, ∃18 over Pen, and ∃18 over
Octa are all undecidable.
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On the set of primes

Let P be the set of all (positive) primes.

Matiyasevich (1975). There is a polynomial
P(x1, . . . , x10) ∈ Z[x1, . . . , x10] such that

P = N ∩ {P(x1, . . . , x10) : x1, . . . , x10 ∈ N}.

Theorem (Sun, arXiv:1704.03504). There are polynomials
P̂(z1, . . . , z20), P̃(z1, . . . , z21) with integer coefficients such that

P =N ∩ {P̂(z2
1 , . . . , z

2
20) : z1, . . . , z20 ∈ N}

=N ∩ {P̃(z1(3z1 + 2), . . . , z21(3z21 + 2)) : z1, . . . , z21 ∈ N}.

In the proof we need the Putnam trick (1969): For any polynomial
P(x) ∈ Z[x ], we have

N ∩ {(x + 1)(1− P(x)2)− 1 : x ∈ N} = {x ∈ N : P(x) = 0}.

We also use the observation that any prime has the form
x2 + y2 + 2z2 (or p8(x) + p8(y) + 2p8(z)) with x , y , z ∈ Z.
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HTP for rings of algebraic number fields

Let K be an algebraic number field and OK be the ring of
algebraic integers in K . It is widely believed that Hilbert’s Tenth
Problem (HTP) over the ring OK is also undecidable. There are
some partial results in this direction.

J. Denef [Proc. Amer. Math. Soc. 1975]: If K is a quadratic
number field, then Z is Diophantine over OK and hence HTP over
OK is undecidable.

H. N. Shapiro and A. Shlapentokh [Comm. Pure Appl. Math.
1989]: If K is an abelian number fields (i.e., the Galois group
Gal(K/Q) is abelian), then Z is Diophantine over OK and hence
HTP over OK is undecidable.

M. R. Murty and H. Pasten [J. Number Theory 2017]: Under
the Birch and Swinnerton-Dyer conjecture and the automorphy
conjecture for L-functions of elliptic curves, HTP over OK is
undecidable for any algebraic number field K .
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HTP over the rational field Q

It is not known that whether HTP over Q is decidable or not. If Z
is Diophantine over Q, then HTP over Q is undecidable since HTP
over Z isundecidable.

Up to now, nobody can show that Z is Diophantine over Q.

J. Robinson [J. Symbolic Logic 14 (1949)]: Z is first-order
definable over Q and so the theory (Q,+, ·) is undecidable.
Moreover, there is a polynomial

F ∈ Z[t, x1, x2, y1, . . . , y7, z1, . . . , z6]

such that a rational number t is an integer if and only if

∀x1∀x2∃y1 . . . ∃y7∀z1 . . . ∀z6[F (t, x1, x2, y1, . . . , y7, z1, . . . , z6) = 0]

holds over Q.
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Further improvements of Robinson’s result

B. Poonen [Amer. J. Math. 131 (2009)]: There is a polynomial
G ∈ Z[t, x1, x2, y1, . . . , y7] such that a rational number t is an
integer if and only if

∀x1∀x2∃y1 . . . ∃y7[G (t, x1, x2, y1, . . . , y7) = 0]

holds over Q.

J. Koenigsmann [Annals of Math. 183 (2016)]: There is a
polynomial H ∈ Z[t, x1, x2, . . . , xn] such that a rational number t is
an integer, if and only if

∀x1∀x2 . . . ∀xn[H(t, x1, x2, . . . , xn) 6= 0]

holds over Q, i.e., the equation

H(t, x1, . . . , xn) = 0

has no solutions with x1, . . . , xn ∈ Q. Thus Q \ Z is Diophantine
over Q.
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