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In the present talk

We investigate the question of possible computable dimensions of

countable structures in familiar classes of projective planes.

Preliminaries on computable structures

Preliminaries on projective planes

Computable dimension of free projective planes
HKSS-completeness of freely generated projective planes

HKSS-completeness of pappian (desarguesian) projective
planes

Complexity of the computable categoricity problem
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Let d be an arbitrary Turing degree and 9t a countable structure in
a computable signature.

We say that 90t is d-computable if its universe |91 is a computable
subset of w and its atomic diagram D (1) is d-computable.

The least degree d such that 9 is d-computable is called the
degree of M and is denoted by deg(9N). (such d always exists)

If 90t is isomorphic to a (d-computable) structure D with compu-
table universe, then M is a (d-computable) presentation of .

The degree spectrum of 9 is the set

DgSp(9t) = {deg(N) | N is a presentation of Mi}.
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Computable dimension and degree spectrum of relation

The d-computable dimension of 9t is the number dimg(97) of
computable presentations of 9T up to d-computable isomorphism.

If dimg(9t) = 1, then M is d-computably categorical.

For d = 0, we write dim(90t) and say “computable” instead of
“d-computable”.

If R is a relation on the domain of a computably presentable
structure 9N, then the degree spectrum of R on 91 is the set

DgSpgp(R) = {deg(f(R)) | f: M = MNisa
computable presentation of Mt}.
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Definition of projective plane

[Shirshov’s approach: partial operation]

A projective plane is a structure A=(A, A° %A, .) with a disjunction
of A into two subsets A U%A = A, A° %4 = & and commutative
partial operation “-" which satisfy the following properties:

(1) a-bis defined iff a and b are distinct elements of the same type
(a and b are of the same type if a,b € A® or a,b € "A);

(2) if a-b is defined, then a and a-b are not of the same type;

(3) forall a,b,c € Aif a-b, a-c, (a-b)-(a-c) are defined, then
(a-b)-(a-c) = a;

(4) there exist distinct a, b, ¢,d € A such that products a-b, b-c,
c-d, d-a are defined and pairwise distinct (2l is nondegenerate.)
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Computable projective planes

In any projective plane 2 = (A, A°,%4,-) we replace the binary
operation by its graph

P = {(a,b,c) € A% | a-b is defined and a-b = ¢},
and consider 2 as a model of predicate signature

o= (A% %4, P).

7/23



Computable projective planes

In any projective plane 2 = (A, A°,%4,-) we replace the binary
operation by its graph

P = {(a,b,c) € A% | a-b is defined and a-b = ¢},
and consider 2 as a model of predicate signature

o= (A% %4, P).

So, A is computable if A, A%, %4 are computable subsets of w and
P is a computable subset of w?.
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Definition of configuration

A configuration is a structure A=(A, A° °A, I) with a disjunction
of A into two subsets A°U% = A, A°N% = & and symmetric
binary relation I C A2 (incidence relation) which satisfy the
following properties:
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Definition of configuration

A configuration is a structure A=(A, A° °A, I) with a disjunction
of A into two subsets A°U% = A, A°N% = & and symmetric
binary relation I C A2 (incidence relation) which satisfy the
following properties:

(1) if (a,b) € I, then a and b are not of the same type;
(2) if (a,c)el, (b,c)€el, (a,d)€l, and (b,d)el, then a=b or c=d.

Given a configuration 2(, we additionally define a partial operation
as follows:

(3) a product a-b is defined and a-b = ciff a # b, (a,c) € I and
(b,c) € 1.
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Closed configurations and projective planes

A configuration 2 is closed if for every distinct a and b of the same
type the product a-b is defined in 2.
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Closed configurations and projective planes

A configuration 2 is closed if for every distinct a and b of the same
type the product a-b is defined in 2.

Thus, a closed configuration is a projective plane iff it is
nondegenerate.

We can consider any projective plane 2 = (A4, A°,%A, ) as a
configuration with the following incidence relation

I={(a,b) € A* |3z € A(a-x = b)}.
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Definition of free closure

We say that a configuration B is a free closure of a configuration 2
and write B = F(2), if there exists a countable sequence

A=Ay CA C...CAU, C ...

of configurations such that B =
following conditions hold:
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Definition of free closure
We say that a configuration B is a free closure of a configuration 2
and write B = F(2), if there exists a countable sequence
A=Ay CA, C...CA; C ...

of configurations such that B =, i and for all i € w the

following conditions hold:

=)

(a) for all distinct a,b € 2; of the same type there exists ¢ € ;41
such that a - b = ¢;

(b) for any ¢ € 2,41 \ 2; there exist exactly two elements
a,b € ; such that a- b = c.

If F(2L) is a projective plane, then we say that §(2l) is freely
generated by a configuration L.
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Definition of free projective plane

The free projective plane §,, where 2 < a < w, is freely generated
by the standard configuration, consisting of the set of points
{bo,b1} U{a; | i € a}, the singleton of lines {c}, and the incidence
relation {(a;,c), (c,a;) | i € a}.

ao al a9 . e
. —
c
[ ]
by
[ ]
bo
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Rank of free closure

If 20 = (A, A° °A T) is a finite configuration, then the rank of 2 is

the number
]

24| - 5

12/23



Rank of free closure

If 20 = (A, A° °A T) is a finite configuration, then the rank of 2 is

the number
]

24| - 5

If 2 is a countable configuration, then the rank of 2 is w.

12/23



Rank of free closure

If 20 = (A, A° °A T) is a finite configuration, then the rank of 2 is

the number
]

24| - 5

If 2 is a countable configuration, then the rank of 2 is w.

The rank of a free closure F(2) is defined to be the rank of a
configuration L.

12/23



Rank of free closure

If 20 = (A, A° °A T) is a finite configuration, then the rank of 2 is

the number
]

2:|A| — =
2
If 2 is a countable configuration, then the rank of 2 is w.

The rank of a free closure F(2) is defined to be the rank of a
configuration L.

Thus, the rank of free projective plane §,,, where 2 < n < w, is the
number n + 6. The rank of free projective plane §,, is w.
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Computable dimension of free projective planes

Every countable free projective plane has a computable presentation
(Shirshov’s construction).
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Computable dimension of free projective planes

Every countable free projective plane has a computable presentation
(Shirshov’s construction).

Theorem 1. Every countable free projective plane has computable
dimension either 1 or w. Furthermore, such a plane is computably
categorical if and only if it has finite rank.

Proof: We use the unbounded models method [Goncharov, 1980]
to prove that the computable dimension of §F,, is effectively infinite.
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Questions on freely generated projective planes

Can we extend the results of Theorem 1 to the case of freely
generated projective planes?
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Questions on freely generated projective planes

Can we extend the results of Theorem 1 to the case of freely
generated projective planes?

Does there exist a computably categorical freely generated
projective plane of infinite rank?

Does there exist, for a given n > 1, a freely generated projective
plane with computable dimension n?
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Effective completeness of graphs

Theorem 2 [Hirschfeldt, Khoussainov, Shore, Slinko, 2002].
For every automorphically nontrivial, countable structure 9 there
exists a countable directed graph & such that

(1) DgSp(&) = DgSp(M);

(2) For any degree d, dimq(®) = dimq (M),

(3) For any a € |9M| there is an x € |®| such that
dim(®, x) = dim(M, a);

(4) For any R C || there is a U C |&| such that
DgSpe (U) = DgSpy (R).-
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Effective completeness of graphs

Theorem 2 [Hirschfeldt, Khoussainov, Shore, Slinko, 2002].
For every automorphically nontrivial, countable structure 9 there
exists a countable directed graph & such that
(1) DgSp(&) = DgSp(M);
(2) For any degree d, dimq(®) = dimq (M),
(3) For any a € |9M| there is an x € |®| such that
dim(®, x) = dim(M, a);
(4) For any R C || there is a U C |&| such that
DgSpe (U) = DgSpyn ().

Definition A class of structures K is HKSS-complete, if for every
automorphically nontrivial, countable structure 91 there exists a
countable structure 20 € K such that 2 satisfies properties (1)—(4)

of Theorem 2.
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Other HKSS-complete classes

Theorem 2 remains true if “directed graph” is replaced by a
structure from any of the following classes:

® symmetric irreflexive graphs; (we will use this fact later)

e partial orderings;

® |attices;

® rings (with zero-divisors);

® integral domains (of arbitrary characteristic);

® commutative semigroups;

® 2_step nilpotent groups;

e fields (of zero characteristic). (we will use this fact later)
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HKSS-completeness of freely generated projective planes

Theorem 3. The class of freely generated projective planes of
infinte rank is HKSS-complete.
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HKSS-completeness of freely generated projective planes

Theorem 3. The class of freely generated projective planes of
infinte rank is HKSS-complete.

Proof: We construct an effective coding of symmetric irreflexive
graphs into freely generated projective planes (of infinite rank)
preserving most computable-model-theoretic properties.

Corollary 4. For every n € w U {w} there exists a freely generated
projective plane of infinite rank with computable dimension n.

17/23



Definition of desarguesian projective planes

A projective plane is desarguesian iff for each of its elements a1, b1,
c1, ag, by, co of the same type such that the products aj-as, by-bo,
C1-Co, (al-bl)'(GQ'bg), (al-Cl)'(az'Cz), (bl-cl)'(bg'CQ) are defined
and the triples {a1,b1,c1}, {a2, ba, ca} form nondegenerate
triangles, if a1-ag, b1-ba, c1-co are incident to the same element,
then (a;-b1)-(az-b2), (ai-c1)-(ag-c2), (bi-c1)-(ba-c2) are also
incident to the same element.
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Definition of pappian projective planes

A projective plane is pappian iff for each of its elements aq, b1, ci,
as, by, co of the same type such that a1-by = ai-¢c; = by-cy,

ag-by = ag-co = by-co, ay-by # as-ba, and the quadruple
{a1,b1,a2,ba} forms a nondegenerate quadrangle, if the products
az = (51'62)'(52-61), bg = (al-cQ)-(ag-cl), C3 = (al-bz)'(CLQ'bl) dare
defined, then a3, b3, c3 are incident to the same element.
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Definition of pappian projective planes

A projective plane is pappian iff for each of its elements aq, b1, ci,
as, by, co of the same type such that a1-by = ai-¢c; = by-cy,

ag-by = ag-co = by-co, ay-by # as-ba, and the quadruple
{a1,b1,a2,ba} forms a nondegenerate quadrangle, if the products
az = (51'62)'(52-01>, bg = (al'CQ)'(CLQ'Cl), C3 = (al-bz)'(CLQ'bl) dare
defined, then a3, b3, c3 are incident to the same element.

Every pappian projective plane is desarguesian.
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HKSS-completeness of pappian projective planes

Theorem 5 [Miller, Poonen, Schoutens, Shlapentokh, 2018].
The class of fields is HKSS-complete.
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Proof: We construct an effective coding (based on the idea of
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most computable-model-theoretic properties.

Corollary 7. For every n € wU {w} there exists a pappian
(desarguesian) projective plane with computable dimension n.
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Definition of computable categoricity problem

If a structure 9t is computable, then the computable index of 9t is
a number e such that D(9) = W,, where W, is a c.e. set with the
Kleene number e.
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Definition of computable categoricity problem

If a structure 9t is computable, then the computable index of 9t is
a number e such that D(9) = W,, where W, is a c.e. set with the
Kleene number e.

Denote by M. the computable structure with computable index e.
Let K be a class of structures closed under isomorphisms.
The index set of K is the set

I(K)={ecw|M € K}.

The computable categoricity problem for K is the set

Io(K) ={e € I(K) | M, is computably categorical}.
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Maximal complexity of I..(K)

If I(K) is hyperarithmetical, then, at worst, I..(K) is II}.
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Maximal complexity of I..(K)

If I(K) is hyperarithmetical, then, at worst, I..(K) is I1}.

Theorem 8 [Downey, Kach, Lempp, Lewis-Pye, Montalban, Turetsky, 2015].
The computable categoricity problem for the class of trees is
m-complete I17.
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Maximal complexity of I..(K)

If I(K) is hyperarithmetical, then, at worst, I..(K) is I1}.

Theorem 8 [Downey, Kach, Lempp, Lewis-Pye, Montalban, Turetsky, 2015].
The computable categoricity problem for the class of trees is
m-complete I17.

Corollary 9. The computable categoricity problem I..(K) is
m-complete I1; for each of the following classes K : symmetric
irreflexive graphs, partial orderings, lattices, rings, commutative
semigroups, fields, etc.
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Complexity of I..(K) for projective planes

Theorem 10 The computable categoricity problem for the class of
free projective planes is m-complete 3.
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Complexity of I..(K) for projective planes

Theorem 10 The computable categoricity problem for the class of
free projective planes is m-complete %9.

Theorem 11. The computable categoricity problem 1..(K) is
m-complete T for each of the following classes K :

(1) pappian projective planes,
(2) desarguesian projective planes,

(3) arbitrary projective planes.

Theorem 12 The computable categoricity problem for the class of
freely generated projective planes is m-complete I} within the
class.
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