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In the present talk

We investigate the question of possible computable dimensions of
countable structures in familiar classes of projective planes.

• Preliminaries on computable structures

• Preliminaries on projective planes

• Computable dimension of free projective planes

• HKSS-completeness of freely generated projective planes

• HKSS-completeness of pappian (desarguesian) projective
planes

• Complexity of the computable categoricity problem
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Computable structures and degree spectrum

Let d be an arbitrary Turing degree and M a countable structure in
a computable signature.

We say that M is d-computable if its universe |M| is a computable
subset of ω and its atomic diagram D(M) is d-computable.

The least degree d such that M is d-computable is called the
degree of M and is denoted by deg(M). (such d always exists)

If M is isomorphic to a (d-computable) structure N with compu-
table universe, then N is a (d-computable) presentation of M.

The degree spectrum of M is the set

DgSp(M) = {deg(N) | N is a presentation of M}.
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Computable dimension and degree spectrum of relation

The d-computable dimension of M is the number dimd(M) of
computable presentations of M up to d-computable isomorphism.

If dimd(M) = 1, then M is d-computably categorical.

For d = 0, we write dim(M) and say �computable� instead of
�d-computable�.

If R is a relation on the domain of a computably presentable
structure M, then the degree spectrum of R on M is the set

DgSpM(R) = {deg(f(R)) | f : M→ N is a

computable presentation of M}.
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De�nition of projective plane

[Shirshov's approach: partial operation]

A projective plane is a structure A=〈A,A0, 0A, ·〉 with a disjunction
of A into two subsets A0 ∪ 0A = A, A0 ∩ 0A = ∅ and commutative
partial operation �·� which satisfy the following properties:

(1) a·b is de�ned i� a and b are distinct elements of the same type
(a and b are of the same type if a, b ∈ A0 or a, b ∈ 0A);

(2) if a·b is de�ned, then a and a·b are not of the same type;

(3) for all a, b, c ∈ A if a·b, a·c, (a·b)·(a·c) are de�ned, then
(a·b)·(a·c) = a;

(4) there exist distinct a, b, c, d ∈ A such that products a·b, b·c,
c·d, d·a are de�ned and pairwise distinct (A is nondegenerate.)

5/23



De�nition of projective plane

[Shirshov's approach: partial operation]

A projective plane is a structure A=〈A,A0, 0A, ·〉 with a disjunction
of A into two subsets A0 ∪ 0A = A, A0 ∩ 0A = ∅ and commutative
partial operation �·� which satisfy the following properties:

(1) a·b is de�ned i� a and b are distinct elements of the same type
(a and b are of the same type if a, b ∈ A0 or a, b ∈ 0A);

(2) if a·b is de�ned, then a and a·b are not of the same type;

(3) for all a, b, c ∈ A if a·b, a·c, (a·b)·(a·c) are de�ned, then
(a·b)·(a·c) = a;

(4) there exist distinct a, b, c, d ∈ A such that products a·b, b·c,
c·d, d·a are de�ned and pairwise distinct (A is nondegenerate.)

5/23



De�nition of projective plane

[Shirshov's approach: partial operation]

A projective plane is a structure A=〈A,A0, 0A, ·〉 with a disjunction
of A into two subsets A0 ∪ 0A = A, A0 ∩ 0A = ∅ and commutative
partial operation �·� which satisfy the following properties:

(1) a·b is de�ned i� a and b are distinct elements of the same type
(a and b are of the same type if a, b ∈ A0 or a, b ∈ 0A);

(2) if a·b is de�ned, then a and a·b are not of the same type;

(3) for all a, b, c ∈ A if a·b, a·c, (a·b)·(a·c) are de�ned, then
(a·b)·(a·c) = a;

(4) there exist distinct a, b, c, d ∈ A such that products a·b, b·c,
c·d, d·a are de�ned and pairwise distinct (A is nondegenerate.)

5/23



De�nition of projective plane

[Shirshov's approach: partial operation]

A projective plane is a structure A=〈A,A0, 0A, ·〉 with a disjunction
of A into two subsets A0 ∪ 0A = A, A0 ∩ 0A = ∅ and commutative
partial operation �·� which satisfy the following properties:

(1) a·b is de�ned i� a and b are distinct elements of the same type
(a and b are of the same type if a, b ∈ A0 or a, b ∈ 0A);

(2) if a·b is de�ned, then a and a·b are not of the same type;

(3) for all a, b, c ∈ A if a·b, a·c, (a·b)·(a·c) are de�ned, then
(a·b)·(a·c) = a;

(4) there exist distinct a, b, c, d ∈ A such that products a·b, b·c,
c·d, d·a are de�ned and pairwise distinct (A is nondegenerate.)

5/23



De�nition of projective plane

[Shirshov's approach: partial operation]

A projective plane is a structure A=〈A,A0, 0A, ·〉 with a disjunction
of A into two subsets A0 ∪ 0A = A, A0 ∩ 0A = ∅ and commutative
partial operation �·� which satisfy the following properties:

(1) a·b is de�ned i� a and b are distinct elements of the same type
(a and b are of the same type if a, b ∈ A0 or a, b ∈ 0A);

(2) if a·b is de�ned, then a and a·b are not of the same type;

(3) for all a, b, c ∈ A if a·b, a·c, (a·b)·(a·c) are de�ned, then
(a·b)·(a·c) = a;

(4) there exist distinct a, b, c, d ∈ A such that products a·b, b·c,
c·d, d·a are de�ned and pairwise distinct (A is nondegenerate.)

5/23



De�nition of projective plane

[Shirshov's approach: partial operation]

A projective plane is a structure A=〈A,A0, 0A, ·〉 with a disjunction
of A into two subsets A0 ∪ 0A = A, A0 ∩ 0A = ∅ and commutative
partial operation �·� which satisfy the following properties:

(1) a·b is de�ned i� a and b are distinct elements of the same type
(a and b are of the same type if a, b ∈ A0 or a, b ∈ 0A);

(2) if a·b is de�ned, then a and a·b are not of the same type;

(3) for all a, b, c ∈ A if a·b, a·c, (a·b)·(a·c) are de�ned, then
(a·b)·(a·c) = a;

(4) there exist distinct a, b, c, d ∈ A such that products a·b, b·c,
c·d, d·a are de�ned and pairwise distinct (A is nondegenerate.)

5/23



Familiar classes of projective planes

Free Planes

⊆ Freely Generated Planes

Pappian Planes ⊆ Desarguesian Planes

Freely Generated Planes ∩Desarguesian Planes = ∅
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Computable projective planes

In any projective plane A = 〈A,A0, 0A, ·〉 we replace the binary
operation by its graph

PA = {〈a, b, c〉 ∈ A3 | a·b is de�ned and a·b = c},

and consider A as a model of predicate signature

σ = 〈A0, 0A,P 〉.

So, A is computable if A,A0, 0A are computable subsets of ω and
PA is a computable subset of ω3.
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De�nition of con�guration

A con�guration is a structure A=〈A,A0, 0A, I〉 with a disjunction
of A into two subsets A0 ∪ 0A = A, A0 ∩ 0A = ∅ and symmetric
binary relation I ⊆ A2 (incidence relation) which satisfy the
following properties:

(1) if 〈a, b〉 ∈ I, then a and b are not of the same type;

(2) if 〈a, c〉∈I, 〈b, c〉∈I, 〈a, d〉∈I, and 〈b, d〉∈I, then a=b or c=d.

Given a con�guration A, we additionally de�ne a partial operation
as follows:

(3) a product a·b is de�ned and a·b = c i� a 6= b, 〈a, c〉 ∈ I and
〈b, c〉 ∈ I.
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Closed con�gurations and projective planes

A con�guration A is closed if for every distinct a and b of the same
type the product a·b is de�ned in A.

Thus, a closed con�guration is a projective plane i� it is
nondegenerate.

We can consider any projective plane A = 〈A,A0, 0A, ·〉 as a
con�guration with the following incidence relation

I = {〈a, b〉 ∈ A2 | ∃x ∈ A(a·x = b)}.
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De�nition of free closure

We say that a con�guration B is a free closure of a con�guration A
and write B = F(A), if there exists a countable sequence

A = A0 ⊆ A1 ⊆ . . . ⊆ Ai ⊆ . . .

of con�gurations such that B =
⋃
i∈ω Ai and for all i ∈ ω the

following conditions hold:

(a) for all distinct a, b ∈ Ai of the same type there exists c ∈ Ai+1

such that a · b = c;

(b) for any c ∈ Ai+1 \ Ai there exist exactly two elements
a, b ∈ Ai such that a · b = c.

If F(A) is a projective plane, then we say that F(A) is freely

generated by a con�guration A.
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De�nition of free projective plane

The free projective plane Fα, where 2 6 α 6 ω, is freely generated
by the standard con�guration, consisting of the set of points
{b0, b1} ∪ {ai | i ∈ α}, the singleton of lines {c}, and the incidence
relation {〈ai, c〉, 〈c, ai〉 | i ∈ α}.

s s s sa0 a1 a2 . . .

c

s
b0

s
b1
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Rank of free closure

If A = 〈A,A0, 0A, I〉 is a �nite con�guration, then the rank of A is
the number

2·|A| − |I|
2

If A is a countable con�guration, then the rank of A is ω.

The rank of a free closure F(A) is de�ned to be the rank of a
con�guration A.

Thus, the rank of free projective plane Fn, where 2 6 n < ω, is the
number n+ 6. The rank of free projective plane Fω is ω.
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Computable dimension of free projective planes

Every countable free projective plane has a computable presentation
(Shirshov's construction).

Theorem 1. Every countable free projective plane has computable

dimension either 1 or ω. Furthermore, such a plane is computably

categorical if and only if it has �nite rank.

Proof: We use the unbounded models method [Goncharov, 1980]
to prove that the computable dimension of Fω is e�ectively in�nite.
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Questions on freely generated projective planes

Can we extend the results of Theorem 1 to the case of freely
generated projective planes?

Does there exist a computably categorical freely generated
projective plane of in�nite rank?

Does there exist, for a given n > 1, a freely generated projective
plane with computable dimension n?
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E�ective completeness of graphs

Theorem 2 [Hirschfeldt, Khoussainov, Shore, Slinko, 2002].
For every automorphically nontrivial, countable structure M there

exists a countable directed graph G such that

(1) DgSp(G) = DgSp(M);

(2) For any degree d, dimd(G) = dimd(M);

(3) For any a ∈ |M| there is an x ∈ |G| such that

dim〈G, x〉 = dim〈M, a〉;
(4) For any R ⊆ |M| there is a U ⊆ |G| such that

DgSpG(U) = DgSpM(R).

De�nition A class of structures K is HKSS-complete, if for every
automorphically nontrivial, countable structure M there exists a
countable structure A ∈ K such that A satis�es properties (1)�(4)
of Theorem 2.
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Other HKSS-complete classes

Theorem 2 remains true if �directed graph� is replaced by a
structure from any of the following classes:

• symmetric irre�exive graphs; (we will use this fact later)

• partial orderings;

• lattices;

• rings (with zero-divisors);

• integral domains (of arbitrary characteristic);

• commutative semigroups;

• 2-step nilpotent groups;

• �elds (of zero characteristic). (we will use this fact later)
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HKSS-completeness of freely generated projective planes

Theorem 3. The class of freely generated projective planes of

in�nte rank is HKSS-complete.

Proof: We construct an e�ective coding of symmetric irre�exive
graphs into freely generated projective planes (of in�nite rank)
preserving most computable-model-theoretic properties.

Corollary 4. For every n ∈ ω ∪ {ω} there exists a freely generated

projective plane of in�nite rank with computable dimension n.
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De�nition of desarguesian projective planes

A projective plane is desarguesian i� for each of its elements a1, b1,
c1, a2, b2, c2 of the same type such that the products a1·a2, b1·b2,
c1·c2, (a1·b1)·(a2·b2), (a1·c1)·(a2·c2), (b1·c1)·(b2·c2) are de�ned
and the triples {a1, b1, c1}, {a2, b2, c2} form nondegenerate
triangles, if a1·a2, b1·b2, c1·c2 are incident to the same element,
then (a1·b1)·(a2·b2), (a1·c1)·(a2·c2), (b1·c1)·(b2·c2) are also
incident to the same element.
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De�nition of pappian projective planes

A projective plane is pappian i� for each of its elements a1, b1, c1,
a2, b2, c2 of the same type such that a1·b1 = a1·c1 = b1·c1,
a2·b2 = a2·c2 = b2·c2, a1·b1 6= a2·b2, and the quadruple
{a1, b1, a2, b2} forms a nondegenerate quadrangle, if the products
a3 = (b1·c2)·(b2·c1), b3 = (a1·c2)·(a2·c1), c3 = (a1·b2)·(a2·b1) are
de�ned, then a3, b3, c3 are incident to the same element.
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Every pappian projective plane is desarguesian.
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HKSS-completeness of pappian projective planes

Theorem 5 [Miller, Poonen, Schoutens, Shlapentokh, 2018].
The class of �elds is HKSS-complete.

Theorem 6. The class of pappian (desarguesian) projective planes

is HKSS-complete.

Proof: We construct an e�ective coding (based on the idea of
coordinatization) of �elds into pappian projective planes preserving
most computable-model-theoretic properties.

Corollary 7. For every n ∈ ω ∪ {ω} there exists a pappian

(desarguesian) projective plane with computable dimension n.
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De�nition of computable categoricity problem

If a structure M is computable, then the computable index of M is
a number e such that D(M) = We, where We is a c.e. set with the
Kleene number e.

Denote by Me the computable structure with computable index e.

Let K be a class of structures closed under isomorphisms.

The index set of K is the set

I(K) = {e ∈ ω |Me ∈ K}.

The computable categoricity problem for K is the set

Icc(K) = {e ∈ I(K) |Me is computably categorical}.
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Maximal complexity of Icc(K)

If I(K) is hyperarithmetical, then, at worst, Icc(K) is Π1
1.

Theorem 8 [Downey, Kach, Lempp, Lewis-Pye,Montalbán, Turetsky, 2015].
The computable categoricity problem for the class of trees is

m-complete Π1
1.

Corollary 9. The computable categoricity problem Icc(K) is

m-complete Π1
1 for each of the following classes K: symmetric

irre�exive graphs, partial orderings, lattices, rings, commutative

semigroups, �elds, etc.
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Complexity of Icc(K) for projective planes

Theorem 10 The computable categoricity problem for the class of

free projective planes is m-complete Σ0
3.

Theorem 11. The computable categoricity problem Icc(K) is

m-complete Π1
1 for each of the following classes K:

(1) pappian projective planes,

(2) desarguesian projective planes,

(3) arbitrary projective planes.

Theorem 12 The computable categoricity problem for the class of

freely generated projective planes is m-complete Π1
1 within the

class.
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