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CDM Theorem

Theorem. [Chatzidakis, van den Dries and Macintyre 1992]
Let ϕ(x1, . . . , xn; y1, . . . , ym) be a formula in the language of rings. Then there
is a positive constant C and finitely many pairs (di, µi) (1 ≤ i ≤ K), with
di ∈ {0, 1, . . . , n} and µi ∈ Q>0 a positive rational number such that:
for each finite field Fq, where q is a prime power, and each ā ∈ Fm

q , if the set
ϕ(Fn

q, ā) is nonempty, then∣∣∣∣ϕ (
Fn

q, ā
)∣∣− µiqdi

∣∣ < Cqdi−(1/2)

for some i ≤ K.
Moreover, for each pair (di, µi), there is a formula ψi(y1, . . . , ym) in the
language of rings such that ψi

(
Fm

q
)

consists of those ā ∈ Fm
q for which the

corresponding inequality with (di, µi) holds.

Proof uses Lang-Weil estimates + Ax’s work on model theory of finite fields.
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Asymptotic classes

The CDM theorem was turned into a definition of an abstract model-theoretic
framework in work of M+Steinhorn, Elwes, Ryten,...

A 1-dimensional asymptotic class is essentially a class of finite structures
satisfying the conclusion of the theorem (e.g. class of finite fields).

Elwes (2007): notion of N-dimensional asymptotic class.

Ryten (PhD thesis, Leeds 2007): For any fixed Lie type τ , the class of all
finite simple groups of type τ is an asymptotic class.
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Asymptotic classes

So, e.g. the collection C = {PSL2(q) : q prime power} is a 3-dim asymp.
class; thus if w(x1, . . . , xn) is any word, we can let φ(x̄, y) be the formula
w(x1, . . . , xn) = y and get an asymptotic uniformity for the cardinalities of
sets {x̄ ∈ Gn : w(x̄) = a} for G ∈ C and a ∈ G.

Pillay, Starchenko: Tao’s ‘Algebraic Regularity Lemma’ holds for graphs
uniformly definable in an asymptotic class.

Corresponding notion of measurable infinite structure (M + Steinhorn) – e.g.
pseudofinite fields: measurable implies supersimple, finite SU rank

Fact: Any ultraproduct of an asymptotic class is measurable.
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Goal: broaden this framework, e.g.

allow parts of the structure (sorts? coordinatising geometries?) to vary
independently,

not require that ultraproducts have finite rank, or even have simple
theory,

not be specific about the form of the functions giving approximate
cardinalities (no longer just of form µqd).

Possible examples to keep in mind:

Pairs (V,Fq) (2-sorted language), V a finite-dim vector space over Fq;

Disjoint unions of complete graphs all of same size (n copies of Km);

Finite abelian groups;

Finite graphs of bounded degree.
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Notation

Given class C of finite L-structures and tuple ȳ of variables, let (C, ȳ) be the set{
(M, ā)

∣∣ M ∈ C, ā ∈ M|ȳ|
}

of pairs consisting of a structure in C and a ȳ-tuple from that structure
(‘pointed structures in C’).

A finite partition Φ of (C, ȳ) (i.e. partition into finitely many parts) is
∅-definable if for each P ∈ Φ there exists an L-formula φP(ȳ) without
parameters such that for any M ∈ C and ā in M, the following are equivalent:
(i) (M, ā) ∈ P
(ii) M |= φP(ā).
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Definition of R-m.a.c.

Let R be any set of functions C −→ R≥0. A class C of finite L-structures is an
R-multidimensional asymptotic class (R-m.a.c.) if for every formula φ(x̄; ȳ)
there is a finite ∅-definable partition Φ of (C, ȳ) and a set
HΦ := {hP : P ∈ Φ} ⊂ R such that for each P ∈ Φ,∣∣|φ(x̄; ā)| − hP(M)

∣∣ = o(hP(M)) (1)

for (M, ā) ∈ P as |M| −→ ∞.

R-m.e.c. (multidimensional exact class) if above we have

|φ(x̄, b̄)| = hP(M).

Weak R-m.a.c. (or R-m.e.c.) – drop the definability clause on the partition Φ.
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Observations

1. An asymptotic class is a m.a.c., where pairs (d, µ) are replaced by
functions M 7→ µ|M|d.

2. To prove a class C is an R-m.a.c. or R-m.e.c it suffices to work with
formulas φ(x, ȳ) (with x a single variable), replacing R by the ring generated
by R. (Fibering argument, using definability.)

3. (Wolf) If C is a m.a.c. or m.e.c. then so is any class of finite structures
uniformly bi-interpretable with C. (Note: These conditions are not closed
under uniform interpretability, as the definability clause may be lost.)

4. Any class uniformly interpretable in a m.a.c. is a weak m.a.c.; likewise for
m.e.c.s.

5. Notion of polynomial m.a.c – here the functions in R are polynomials in
the cardinalities of certain uniformly definable sets in M.
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Examples of m.a.c.s

1. (Garcia, M, Steinhorn) Class C of 2-sorted structures (V,Fq), with V finite
dim. v.s. over Fq. Given φ(x̄, ȳ) there is a finite set Eφ of polynomials g(V,F)
over Q such that if M = (V,F) then each hP(M) has form g(|V|, |F|) for some
g ∈ Eφ. Ultraproducts of C are supersimple, but the V-sort may have rank ω.

2. More generally, fix a quiver Q (digraph) of finite representation type
(Dynkin diagrams An, Dn, Eq, E7, E8). Over a field F, this has a
finite-dimensional path algebra FQ, which has finitely many isomorphism
types of indecomposable representations. Let

CQ := {(V,FQ,F) : F finite field ,V finite module for FQ}

(3-sorted, with the natural language). Then CQ is a polynomial R-m.a.c. with
the functions hP given by polynomials g(F,W1, . . . ,Wt), where the Wi

variables correspond to the indecomposables.
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Examples

3. (Bello Aguirre) In the language of rings, for fixed d ∈ N, let Cd be the
collection of all finite residue rings Z/nZ, where n is a product of powers of
at most d primes, each with exponent at most d.

Then Cd is a weak m.a.c., and a (polynomial) m.a.c. after appropriate
expansion by unary predicates. If just one prime is involved, this is an
asymptotic class. e.g. {Z/p2Z : p prime} is a 2-dim asymptotic class.
Ultraproducts are supersimple of finite SU-rank.
(Idea: Z/pdZ is coordinatised uniformly by Z/pZ.)

4. There is no weak m.e.c. consisting of infinitely many finite fields (consider
elliptic curves).
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Generalised measurable structures
Let (S,+, ·, 0, 1, <) be a (commutative) ordered semiring (so (S,+, 0),
(S, ·, 1) are commutative monoids, least element 0, etc.). Define ∼ on S with
a ∼ b iff a ≤ b ≤ na or b ≤ a ≤ nb for some n ∈ N. Put D := S/ ∼, and
d : S→ D the natural ‘dimension’ map. Say S is a measuring semiring if

∀x, y, z ∈ S((x < y ∧ d(y) = d(z))→ x + z < y + z).

Let S be a measuring semiring and let M be an L-structure. We say that M is
S-measurable if there is a function h : Def(M) −→ S such that

1 finite sets h(X) = |X| for finite X;
2 finite additivity h is finitely additive;
3 mac condition for each ∅-definable family X there is finite F ⊆ S such

that h(X ) = F and for each f ∈ F, h−1(f ) is a ∅-definable family;
4 Fubini Suppose p : X −→ Y is a definable function for which there exists

f ∈ S such that for all ā ∈ Y , h(p−1(ā)) = f ; then we have
h(X) = f · h(Y).
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Generalised measurable structures

Weakly generalised measurable: in (3) above omit assumption that each
h−1(f ) is ∅-definable.

Proposition. Let M be weakly generalised measurable. Then

(i) M does not have the strict order property, i.e. there is no definable partial
order with an infinite totally ordered subset;

(ii) M is functionally unimodular, that is, if fi : A→ B (for i = 1, 2) are
definable surjections with fi ki-to-1, then k1 = k2.
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Generalised measurable structures

Proposition. Let M be S-measurable, and let
S0 := {h(X) : X ⊆ M definable.}.
If d(S0) = S0/ ∼ is well-ordered then M is supersimple.

Sketch Proof. Forking ensures drop in dimension.

Example (Anscombe). If M is a Fraı̈ssé limit of a free amalgamation class
then M is generalised measurable (note for example the generic triangle-free
graph is such a Fraı̈ssé limit and has TP1 and TP2 theory).
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Generalised measurable structures

Proposition.
1. If C is a m.a.c. then any ultraproduct is generalised measurable (so NSOP,
etc.)

2. If C is a m.e.c. then any ultraproduct is S-measurable for some ordered ring
S.

Note. The above supersimplicity result applies to ultraproducts of examples
like

{(V,Fq) : q prime power ,V finite dim. over Fq}

and the quiver example, where the defining functions are given by
polynomials in several variables, so the corresponding set of dimensions is
well-ordered as they are polynomial degrees.
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Examples of m.e.c.s

1. (Essentially by Pillay) Let M be any pseudofinite strongly minimal set.
Then there is an R-m.e.c. C whose infinite ultraproducts are all elementarily
equivalent to M, with the functions in R given as polynomials (over Z) in the
cardinalities of the members of C.

2. (Wolf, based on Cherlin-Hrushovski) For a fixed language L and d ∈ N, let
CL,d be the collection of all finite L-structures with at most d 4-types (i.e.
orbits of the automorphism group on quadruples). Then CL,d is a m.e.c
(functions determining cardinalities are given by polynomials in the
coordinatising Lie geometries).

3. For any fixed d, the class Cd of finite graphs of degree at most d is a m.e.c.
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Examples of m.e.c.s – groups

4. (help from Kestner) The class of all finite abelian groups is a m.e.c. (in
fact, for any fixed finite ring R, this holds for the class of all finite R-modules).

Proposition. If C is a m.e.c. of groups, then there is d ∈ N such that the
groups in C have (uniformly definable) soluble radical R(G) of index at most
d, and R(G)/F(G) has derived length at most d
(here F(G) is the largest nilpotent normal subgroup of G).

Problem. Find a m.e.c. with an ultraproduct with non-simple theory.
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Homogeneous structures as limits of m.e.c.s

Proposition. If M is a stable homogeneous structure (in Fraı̈ssé’s sense) over
a finite relational language, then there is a m.e.c with ultraproduct
elementarily equivalent to M.

Proof. Lachlan’s structure theory for stable homogeneous structures + Wolf’s
result above.

Remark. Let q be a prime power with q ≡ 1 (mod 4).
The Paley graph Pq has vertex set the field Fq, with a adjacent to b if and
only if a− b is a square. The Paley graphs form a m.a.c (but not m.e.c) with
limit the random graph, which is homogeneous but unstable.
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Theorem. Let M be any of the following homogeneous structures. Then there
is no m.e.c. with an ultraproduct elementarily equivalent to M.

(i) Any unstable homogeneous graph.

(ii) Any homogeneous tournament.

(iii) The digraph Pn for each n ≥ 3 (universal subject to omitting an
independent set In).

(iii) The generic bipartite graph.
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Proof

of (ii) above, that the universal homogeneous tournament is not a limit of a
m.e.c..

For a contradiction, consider a m.e.c. C of finite tournaments with
ultraproduct ≡ the random tournament.

1. Any finite regular tournament has indegree equal to outdegree, so has an
odd number of vertices.

2. For any formula φ(x̄, ȳ), in a large enough finite tournament M the
cardinality |φ(M, ā)| depends just on the isomorphism type of ā (uses QE, +
definability clause of m.e.c.).

3. Any large enough M ∈ C is regular.

4. If M ∈ C is large enough finite and a, b are distinct vertices, then the
tournaments M and on the sets {x : a, b→ x}, {x : x→ a, b},
{x : a→ x→ b} and {x : b→ x→ a} are all regular, so all of odd size.

5. The sum of four odd numbers +2 is even, contradicting (3)!
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