Definable sets in finite structures

Dugald Macpherson

University of Leeds

June 17, 2019

(joint work with Sylvy Anscombe, Charles Steinhorn, Daniel Wolf)

Dugald Macpherson (University of Leeds)

Finite structures

(日)

CDM Theorem

Theorem. [Chatzidakis, van den Dries and Macintyre 1992] Let $\varphi(x_1, \ldots, x_n; y_1, \ldots, y_m)$ be a formula in the language of rings. Then there is a positive constant *C* and finitely many pairs (d_i, μ_i) $(1 \le i \le K)$, with $d_i \in \{0, 1, \ldots, n\}$ and $\mu_i \in \mathbb{Q}^{>0}$ a positive rational number such that: for each finite field \mathbb{F}_q , where *q* is a prime power, and each $\bar{a} \in \mathbb{F}_q^m$, if the set $\varphi(\mathbb{F}_q^n, \bar{a})$ is nonempty, then

$$\left|\left|\varphi\left(\mathbb{F}_{q}^{n},\bar{a}\right)\right|-\mu_{i}q^{d_{i}}\right| < Cq^{d_{i}-(1/2)}$$

for some $i \leq K$.

Moreover, for each pair (d_i, μ_i) , there is a formula $\psi_i(y_1, \ldots, y_m)$ in the language of rings such that $\psi_i(\mathbb{F}_q^m)$ consists of those $\bar{a} \in \mathbb{F}_q^m$ for which the corresponding inequality with (d_i, μ_i) holds.

Proof uses Lang-Weil estimates + Ax's work on model theory of finite fields.

The CDM theorem was turned into a **definition** of an abstract model-theoretic framework in work of M+Steinhorn, Elwes, Ryten,...

A **1-dimensional asymptotic class** is essentially a class of finite structures satisfying the conclusion of the theorem (e.g. class of finite fields).

Elwes (2007): notion of N-dimensional asymptotic class.

Ryten (PhD thesis, Leeds 2007): For any fixed Lie type τ , the class of all finite simple groups of type τ is an asymptotic class.

Asymptotic classes

So, e.g. the collection $C = \{PSL_2(q) : q \text{ prime power}\}\$ is a 3-dim asymp. class; thus if $w(x_1, \ldots, x_n)$ is any word, we can let $\phi(\bar{x}, y)$ be the formula $w(x_1, \ldots, x_n) = y$ and get an asymptotic uniformity for the cardinalities of sets $\{\bar{x} \in G^n : w(\bar{x}) = a\}$ for $G \in C$ and $a \in G$.

Pillay, Starchenko: Tao's 'Algebraic Regularity Lemma' holds for graphs uniformly definable in an asymptotic class.

Corresponding notion of **measurable** infinite structure (M + Steinhorn) - e.g.pseudofinite fields: measurable implies supersimple, finite SU rank

Fact: Any ultraproduct of an asymptotic class is measurable.

Goal: broaden this framework, e.g.

- allow parts of the structure (sorts? coordinatising geometries?) to vary independently,
- not require that ultraproducts have finite rank, or even have simple theory,
- not be specific about the form of the functions giving approximate cardinalities (no longer just of form μq^d).

Possible examples to keep in mind:

- Pairs (V, \mathbb{F}_q) (2-sorted language), V a finite-dim vector space over \mathbb{F}_q ;
- Disjoint unions of complete graphs all of same size (*n* copies of *K_m*);
- Finite abelian groups;
- Finite graphs of bounded degree.

Notation

Given class C of finite \mathcal{L} -structures and tuple \bar{y} of variables, let (C, \bar{y}) be the set

$$\left\{ (M, \bar{a}) \mid M \in \mathcal{C}, \bar{a} \in M^{|\bar{y}|} \right\}$$

of pairs consisting of a structure in C and a \bar{y} -tuple from that structure ('pointed structures in C').

A finite partition Φ of (\mathcal{C}, \bar{y}) (i.e. partition into finitely many parts) is \emptyset -**definable** if for each $P \in \Phi$ there exists an \mathcal{L} -formula $\phi_P(\bar{y})$ without parameters such that for any $M \in \mathcal{C}$ and \bar{a} in M, the following are equivalent: (i) $(M, \bar{a}) \in P$ (ii) $M \models \phi_P(\bar{a})$.

Definition of *R*-m.a.c.

Let *R* be any set of functions $\mathcal{C} \longrightarrow \mathbb{R}_{\geq 0}$. A class \mathcal{C} of finite \mathcal{L} -structures is an *R*-multidimensional asymptotic class (*R*-m.a.c.) if for every formula $\phi(\bar{x}; \bar{y})$ there is a finite \emptyset -definable partition Φ of (\mathcal{C}, \bar{y}) and a set $H_{\Phi} := \{h_P : P \in \Phi\} \subset R$ such that for each $P \in \Phi$,

$$\left| \left| \phi(\bar{x}; \bar{a}) \right| - h_P(M) \right| = o(h_P(M)) \tag{1}$$

for $(M, \bar{a}) \in P$ as $|M| \longrightarrow \infty$.

R-m.e.c. (multidimensional exact class) if above we have

$$|\phi(\bar{x},\bar{b})|=h_P(M).$$

Weak *R*-m.a.c. (or *R*-m.e.c.) – drop the definability clause on the partition Φ .

Observations

1. An asymptotic class is a m.a.c., where pairs (d, μ) are replaced by functions $M \mapsto \mu |M|^d$.

2. To prove a class C is an *R*-m.a.c. or *R*-m.e.c it suffices to work with formulas $\phi(x, \bar{y})$ (with *x* a single variable), replacing *R* by the ring generated by *R*. (Fibering argument, using definability.)

3. (Wolf) If C is a m.a.c. or m.e.c. then so is any class of finite structures uniformly bi-interpretable with C. (Note: These conditions are not closed under uniform interpretability, as the definability clause may be lost.)

4. Any class uniformly interpretable in a m.a.c. is a weak m.a.c.; likewise for m.e.c.s.

5. Notion of **polynomial m.a.c** – here the functions in R are polynomials in the cardinalities of certain uniformly definable sets in M.

Examples of m.a.c.s

1. (Garcia, M, Steinhorn) Class C of 2-sorted structures (V, \mathbb{F}_q) , with V finite dim. v.s. over \mathbb{F}_q . Given $\phi(\bar{x}, \bar{y})$ there is a finite set E_{ϕ} of polynomials $g(\mathbb{V}, \mathbb{F})$ over \mathbb{Q} such that if M = (V, F) then each $h_P(M)$ has form g(|V|, |F|) for some $g \in E_{\phi}$. Ultraproducts of C are supersimple, but the *V*-sort may have rank ω .

2. More generally, fix a quiver Q (digraph) of *finite representation type* (Dynkin diagrams A_n , D_n , E_q , E_7 , E_8). Over a field F, this has a finite-dimensional *path algebra FQ*, which has finitely many isomorphism types of indecomposable representations. Let

 $\mathcal{C}_Q := \{ (V, FQ, F) : F \text{ finite field }, V \text{ finite module for } FQ \}$

(3-sorted, with the natural language). Then C_Q is a polynomial *R*-m.a.c. with the functions h_P given by polynomials $g(F, W_1, \ldots, W_t)$, where the W_i variables correspond to the indecomposables.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Examples

3. (Bello Aguirre) In the language of rings, for fixed $d \in \mathbb{N}$, let C_d be the collection of all finite residue rings $\mathbb{Z}/n\mathbb{Z}$, where *n* is a product of powers of at most *d* primes, each with exponent at most *d*.

Then C_d is a weak m.a.c., and a (polynomial) m.a.c. after appropriate expansion by unary predicates. If just one prime is involved, this is an asymptotic class. e.g. $\{\mathbb{Z}/p^2\mathbb{Z} : p \text{ prime}\}$ is a 2-dim asymptotic class. Ultraproducts are supersimple of finite SU-rank. (Idea: $\mathbb{Z}/p^d\mathbb{Z}$ is coordinatised uniformly by $\mathbb{Z}/p\mathbb{Z}$.)

4. There is no weak m.e.c. consisting of infinitely many finite fields (consider elliptic curves).

Generalised measurable structures

Let $(S, +, \cdot, 0, 1, <)$ be a (commutative) ordered semiring (so (S, +, 0), $(S, \cdot, 1)$ are commutative monoids, least element 0, etc.). Define \sim on *S* with $a \sim b$ iff $a \leq b \leq na$ or $b \leq a \leq nb$ for some $n \in \mathbb{N}$. Put $D := S/\sim$, and $d: S \to D$ the natural 'dimension' map. Say *S* is a **measuring semiring** if

$$\forall x, y, z \in S((x < y \land d(y) = d(z)) \rightarrow x + z < y + z).$$

Let *S* be a measuring semiring and let *M* be an *L*-structure. We say that *M* is *S*-measurable if there is a function $h : Def(M) \longrightarrow S$ such that

• *finite sets*
$$h(X) = |X|$$
 for finite *X*;

finite additivity h is finitely additive;

- Imac condition for each Ø-definable family X there is finite F ⊆ S such that h(X) = F and for each f ∈ F, h⁻¹(f) is a Ø-definable family;
- *Fubini* Suppose $p : X \longrightarrow Y$ is a definable function for which there exists $f \in S$ such that for all $\bar{a} \in Y$, $h(p^{-1}(\bar{a})) = f$; then we have $h(X) = f \cdot h(Y)$.

Weakly generalised measurable: in (3) above omit assumption that each $h^{-1}(f)$ is \emptyset -definable.

Proposition. Let *M* be weakly generalised measurable. Then

(i) *M* does not have the strict order property, i.e. there is no definable partial order with an infinite totally ordered subset;

(ii) *M* is **functionally unimodular**, that is, if $f_i : A \to B$ (for i = 1, 2) are definable surjections with $f_i k_i$ -to-1, then $k_1 = k_2$.

Generalised measurable structures

Proposition. Let *M* be *S*-measurable, and let $S_0 := \{h(X) : X \subseteq M \text{ definable.}\}.$ If $d(S_0) = S_0 / \sim$ is well-ordered then *M* is supersimple.

Sketch Proof. Forking ensures drop in dimension.

Example (Anscombe). If M is a Fraïssé limit of a free amalgamation class then M is generalised measurable (note for example the generic triangle-free graph is such a Fraïssé limit and has TP1 and TP2 theory).

Generalised measurable structures

Proposition.

1. If C is a m.a.c. then any ultraproduct is generalised measurable (so NSOP, etc.)

2. If C is a m.e.c. then any ultraproduct is *S*-measurable for some ordered **ring** *S*.

Note. The above supersimplicity result applies to ultraproducts of examples like

 $\{(V, \mathbb{F}_q) : q \text{ prime power }, V \text{ finite dim. over } \mathbb{F}_q\}$

and the quiver example, where the defining functions are given by polynomials in several variables, so the corresponding set of dimensions is well-ordered as they are polynomial degrees.

Examples of m.e.c.s

1. (Essentially by Pillay) Let *M* be any pseudofinite strongly minimal set. Then there is an *R*-m.e.c. C whose infinite ultraproducts are all elementarily equivalent to *M*, with the functions in *R* given as polynomials (over \mathbb{Z}) in the cardinalities of the members of C.

2. (Wolf, based on Cherlin-Hrushovski) For a fixed language L and $d \in \mathbb{N}$, let $C_{L,d}$ be the collection of all finite L-structures with at most d 4-types (i.e. orbits of the automorphism group on quadruples). Then $C_{L,d}$ is a m.e.c (functions determining cardinalities are given by polynomials in the coordinatising Lie geometries).

3. For any fixed d, the class C_d of finite graphs of degree at most d is a m.e.c.

4. (help from Kestner) The class of all finite abelian groups is a m.e.c. (in fact, for any fixed finite ring *R*, this holds for the class of all finite *R*-modules).

Proposition. If C is a m.e.c. of groups, then there is $d \in \mathbb{N}$ such that the groups in C have (uniformly definable) soluble radical R(G) of index at most d, and R(G)/F(G) has derived length at most d (here F(G) is the largest nilpotent normal subgroup of G).

Problem. Find a m.e.c. with an ultraproduct with non-simple theory.

Homogeneous structures as limits of m.e.c.s

Proposition. If M is a stable homogeneous structure (in Fraïssé's sense) over a finite relational language, then there is a m.e.c with ultraproduct elementarily equivalent to M.

Proof. Lachlan's structure theory for stable homogeneous structures + Wolf's result above.

Remark. Let q be a prime power with $q \equiv 1 \pmod{4}$.

The **Paley graph** P_q has vertex set the field \mathbb{F}_q , with *a* adjacent to *b* if and only if a - b is a square. The Paley graphs form a m.a.c (but not m.e.c) with limit the random graph, which is homogeneous but unstable.

Theorem. Let M be any of the following homogeneous structures. Then there is no m.e.c. with an ultraproduct elementarily equivalent to M.

- (i) Any unstable homogeneous graph.
- (ii) Any homogeneous tournament.
- (iii) The digraph P_n for each $n \ge 3$ (universal subject to omitting an independent set I_n).
- (iii) The generic bipartite graph.

Proof

of (ii) above, that the universal homogeneous tournament is not a limit of a m.e.c..

For a contradiction, consider a m.e.c. C of finite tournaments with ultraproduct \equiv the random tournament.

1. Any finite regular tournament has indegree equal to outdegree, so has an odd number of vertices.

2. For any formula $\phi(\bar{x}, \bar{y})$, in a large enough finite tournament *M* the cardinality $|\phi(M, \bar{a})|$ depends just on the isomorphism type of \bar{a} (uses QE, + definability clause of m.e.c.).

3. Any large enough $M \in C$ is regular.

4. If *M* ∈ C is large enough finite and *a*, *b* are distinct vertices, then the tournaments *M* and on the sets {*x* : *a*, *b* → *x*}, {*x* : *x* → *a*, *b*}, {*x* : *x* → *a*, *b*}, {*x* : *a* → *x* → *b*} and {*x* : *b* → *x* → *a*} are all regular, so all of odd size.
5. The sum of four odd numbers +2 is even, contradicting (3)!

イロト 不得 とく ヨト イヨト 二日