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Main topics of the talk

Background. Computable reducibility.

Structure of degrees. Ceers of special kind.

Isomorphic types.

Definable sets of degrees.



Examples of positive equivalences and preorders

A c.e. equivalence (preorder) relation in ω is called positive
equivalence (positive preoder).

E and P stand for the set of ceers and the set of positive preorders

Example 1. Words problem in algebra.

Example 2. Provable equivalence ` Φ↔ Ψ and provable preorder
` Φ→ Ψ in the Peano arithmetics.
`n is the restriction of ` to Σn formulas.



Examples of positive equivalences and preorders

Example 3. Positive models.
A positive model is a countable algebraic structure A =< A, σ >
equipped with a positive numbering ν : ω 7→ A s.t. predicates and
functions of σ are represented by c.e. relations on ω and
computable functions.
By definition, ν is a positive numbering if the numerical predicate
ν(x) = ν(y) is c.e. in x , y .

In particular, for σ = ∅, we have a natural example of positive
equivalence, and, for σ = {≤}, we have a positive preorder
P(x , y)↔ ν(x) ≤ ν(y).
Conversely, if P(x , y) is a positive preorder then
A =< ω/supp(P),≤> with ν(x) = [x ]supp(P) is a positive model.
Here supp(P)y ↔ xPy & yPx is an equivalence relation that we
call the support of P.



Examples of positive equivalences and preorders

Example 4. Splintors.
For a partial function f and any x , y , let
xEf y ↔ ∃m∃n(f (m)(x) ↓= f (n)(y) ↓).

Yu.L. Ershov, 1971:
(i) Every ceer is Ef for some partial computable function f .
(ii) Every Ef is subobject of Eu where u is a unary universal partial
computable function.

Example 5 of Gao and Gerdes.
ER denotes the equivalence whose classes are singletons except one
and the latter is R.



Computable reducibility

For any equivalences E0,E1, consider numberings νi : ω 7→ ω/Ei

defined by: νi (x) = [x ]Ei
. Then, in the category of numbered sets,

(ω/E0
, ν0) is a subobject of (ω/E1

, ν1) if there exist injective
mapping µ : ω/E0

7→ ω/E1
and a computable function f s.t. for

every x ∈ ω, µ(ν0(x)) = ν1(f (x)).

This means that ∀x∀y(ν0x = ν0y ⇔ ν1f (x) = ν1f (y)) or,
equivalently, ∀x∀y(xE0y ⇔ f (x)E1f (y)).

Definition (C.Bernardi and A.Sorbi, 1983) with reference to
numbering theory. A ceer E is called c-reducible to a ceer G
(E 6c G ) if there is a computable f s.t. ∀x∀y(xEy ⇔ f (x)Gf (y)).
(For instance, in Example 4 Ef 6c Eu.)

Observation. The definition is easily extended without any change
to c-reduction for binary relations, and, in particular, for positive
preorders.



Structures of c-degrees

E is c-equivalent to G (E ≡c G ) if E 6c G and G 6c E .
deg(E ) = {G : G ≡c E} is the degree of E .
Ec �< {deg(E ) : E ∈ E},6c> is a partially ordered set.
Pc is defined analogously.

Proposition. Mapping R 7→ ER induces isomorphism of the
structure of 1-degrees of the infinite c.e. sets onto some interval of
Ec .

Due to A.Lachlan, 1969, and other well-known facts, this implies
that:
elementary theory of Ec is undecidable;
Ec is not neither upper nor low semilattice;
Ec contains infinite chains of type ω;
Ec contains infinite anti-chains, etc.



General facts on Ec

Let Idn and Id stand for the equivalence modulo n and the identity
relation.

Fact 1. Idn 6c Idm ⇐⇒ n ≤ m.
Fact 2. Any ceer with finitely many classes is c-equivalent to one
of Idn.
Fact 3. Every Idn is c-reducible to any ceer with infinitely many
classes. The converse is always wrong.
Fact 4. Id is not c-reducible to ER with a simple set R (Example
5).
Fact 5. Ec has the least degree and the greatest degree. Any
element of the latter is called universal positive equivalence.



Universal ceers.

Universal ceers do exist:
Yu.L. Ershov, 1971: Eu;
C.Bernardi and A.Sorbi, 1983: direct sum of all ceers, `n;
F.Montagna, 1982: `, u.f .p., e-complete;
U.Andrews, S.Lempp, et al, 2014: uniformly effectively inseparable.

Note: Eu is computably isomorphic to every `n but not to `.

Problem: How many isomorphic types there is inside a given
c-degree?

S.Badaev and A.Sorbi, 2016: There is infinite anti-chain of
non-isomorphic universal ceers.

Universal positive preorders do exist too:
F.Montagna and A.Sorbi, 1985: based on proof theory,
S.Badaev, B.Kalmurzayev, et al, 2018: based on direct sums.



Precompleteness and its variations.

A.I.Mal’tsev, 1961: An equivalence E is called precomplete if every
partial computable function f could be totalized by a computable
function g modulo E :
∀x(f (x) ↓⇒ g(x)Ef (x)).

F.Montagna, 1982: Non-trivial equivalence E is called uniformly
finitely precomplete (u.f.p) if there is a computable function
f (D, e, x) s.t. for every finite set D and every e, x ,
ϕe(x) ↓ [D]E ⇒ ϕe(x)Ef (D, e, x).

Examples of u.f.p ceers: `, `n, precomplete ceers.

F.Montagna, 1982: Every u.f.p. ceer is universal.



Precompleteness and its variations.

Ershov’s fixed point theorem:
An equivalence E is precomplete iff there is a computable function
f s.t.
∀e(ϕe(f (e)) ↓⇒ f (e)Eϕe(f (e))).

S.Badaev, 1991: An equivalence E is called weakly precomplete if
there is a partial computable function f s.t.
∀e(ϕe is total ⇒ f (e)Eϕe(f (e))).

S.Badaev and A.Sorbi, 2016: A ceer E is weakly precomplete iff
∀e(ϕe is total ⇒ ∃n(nEϕe(n)).

S.Badaev and A.Sorbi, 2016: There is infinitely many computably
non-isomorphic weakly precomplete universal ceers.

Complete information on universal ceers is in the survey of
U.Andrews, S.Badaev, and A.Sorbi, 2017.



Jump operator. Criterion of universality

Definition (S.Gao and P.Gerdes, 2001):
xE ′y ⇔ x = y ∨ ϕx(x) ↓ Eϕy (y) ↓.

1. E 6c E ′.
2. E1 6c E2 ⇔ E ′

1 6c E ′
2.

3. If E is not universal then E ′ is not universal.
4. U.Andrews and A.Sorbi, 2018: For every E ∈ E , E ′ is uniform
join-irreducible.

U.Andrews, S.Lempp, J.S.Miller, K.M.Ng, L.San Mauro, and
A.Sorbi, 2014: Ceer E is universal iff E ′ ≡c E .



Some classes of ceers.

F � {degrees of ceers with finitely many classes},
L� {degrees above deg(Id)} (each consists of light ceers),
D is the set of remaining degrees (each consists of dark ceers).

Properties of dark ceers
1. Every dark ceer has infinitely many equivalence classes and is
incomparable with Id.
2. D is an ideal of Ec over F .
3. D is closed under uniform join ⊕.
Here, x(E0 ⊕ E1)y ↔ 2xE02y&(2x + 1)E1(2y + 1).
4. ∀D ∈ D(D ⊕ Id = D ∨ Id).
5. D has neither maximal nor greatest elements. Any two
incomparable elements has no join. (U.Andrews and A.Sorbi,
arXiv).
6. D has infinitely many minimal elements over F induced by
weakly precomplete ceers (U.Andrews and S.Badaev, to appear).



One more class of ceers

Observation. For every ceer E , either E ≡c E ⊕ Id1 or
E <c E ⊕ Id1.
Definition (A.Sorbi, folklor). E is called self-full if E ≡c E ⊕ Id1
or, equivalently, if any computable reduction of E to itself is onto
on equivalence classes.
Let S stands for the set of the degrees of self-full ceers. Then
D ⊂ S.
U.Andrews and A.Sorbi, arXiv: If E is self-full then deg(E ) has the
unique strong minimal cover (the degree of E ⊕ Id1), otherwise,
deg(E ) has infinitely many strong minimal covers.



Number of types of computable isomorphism

For a ceer E , N(E ) stands for the number of isomorphism types
inside deg(E ).

U.Andrews and S.Badaev, to appear: N(E ) = 1 iff E is self-full
and has no computable classes. Otherwise, N(E ) = ω.

For instance, a dark weakly precomplete ceer E has N(E ) = 1.

D.Kabylzhanova, 2018: For a positive preorder P, N(P) = 1 iff P
is self-full and has no computable classes. Otherwise, N(P) = ω.

N?(E ) stands for the number of isomorphism types of weakly
precomplete ceers deg(E ).
U.Andrews and S.Badaev, to appear: The range of N?(E ) is [0, ω].



Definable sets of degrees

U.Andrews and A.Sorbi, arXiv:degc(Id), F , L, D, and S are first
order definable.



Thank you for attention!
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