Computable vs low linear orders

Andrey Frolov

Nur-Sultan, June 18, 2019

< A

▶ ∢ ≣ ▶

- 2 Positive results
- 3 Negative results
- 4 Effective categoricity

Introduction

Theorem (C. Jockusch, R. Soare, 1991)

There exists a low linear order with no a computable copy.

Theorem (R. Downey, M. Moses, 1989)

Any low discrete linear order has a computable copy.

・ロト ・ 同ト ・ ヨト ・

Introduction

Downey's Research Program

To describe order properties P which guarantees that if a low linear order is such that P(L) then L has a computable copy.

Introduction

Downey's Research Program

To describe order properties P which guarantees that if a low linear order is such that P(L) then L has a computable copy.

Extended Research Program

To describe order properties P_n which guarantees that if a low_n linear order is such that $P_n(L)$ then L has a computable copy.

Introduction

Theorem (A. Frolov, 2010 and, independently, A. Montalban, 2009)

A linear order is low iff the order has a $0^\prime\text{-}\text{computable}$ copy with $0^\prime\text{-}\text{computable}$ successors.

<**●●** < **●** <

Positive results

Definition

A linear order is k-quasidiscrete, if each its block is either infinite $(\omega, \omega^*, \zeta)$, or contains no more than k elements.

A linear order is k-discrete, if each its block is either ζ , or contains no more than k elements.

A linear order is strongly η -like, if there is k such that each its block contains no more than k elements.

Positive results

Theorem (A. Frolov, 2010)

Any low k-quasidiscrete has a computable copy via a $\mathbf{0}^{\prime\prime\prime}$ -computable isomorphism.

If the order is k-discrete then the isomorphism is $\mathbf{0}''$ -computable.

If the order is strongly $\eta\text{-like}$ then the isomorphism is $\mathbf{0}'\text{-}\mathrm{computable}.$

Positive results

Theorem (P. Alaev, A. Frolov, J. Thurber, 2009)

Any low_2 1-quasidiscrete linear order has a computable copy via a ${\bf 0}^{\prime\prime\prime}\text{-}\mathsf{computable}$ isomorphism.

・ロト ・ 同ト ・ ヨト ・

Positive results

Definition

A linear order is called η -like, if it has the form $\sum f(q)$, where

$$f:\mathbb{Q}\to\mathbb{N}\setminus\{0\}.$$

If the range of f is bounded then the order is strongly η -like (without the greatest and the least elements).

 $q \in \mathbb{O}$

Positive results

Definition

A linear order is called η -like, if it has the form $\sum f(q)$, where

$$f:\mathbb{Q}\to\mathbb{N}\setminus\{0\}.$$

If the range of f is bounded then the order is strongly η -like (without the greatest and the least elements).

Theorem (A. Frolov, 2006)

Any low strongly η -like has a computable copy.

 $q \in \mathbb{O}$

(日) (同) (三) (三)

Positive results

Theorem (A. Frolov, M. Zubkov, 2009)

If L is η -like then the following are equivalent:

1) *L* has a **0**'-computable copy such that the successor and the block relations are both **0**'-computable.

2)
$$L \cong \sum_{q \in \mathbb{Q}} f(q)$$
, where $f : \mathbb{Q} \to \mathbb{N} \setminus \{0\}$ and
 $epigr(f) = \{(q, n) \in \mathbb{Q} \times \mathbb{N} \mid f(q) \le n\} \in \Pi_2^0$.
It means that f is **0**'-limitwise monotonic function

3) L has a computable copy with Π_1^0 blocks.

Positive results

Theorem (A. Frolov, 2012)

If a low η -like linear order does not contain an infinite strongly η -like interval, then it has a computable copy via **0**"-computable isomorphism.

Theorem (A. Frolov, 2012)

If a linear order does not contain an infinite strongly η -like interval and its condensation is η , then it has a computable copy via $\mathbf{0}''$ -computable isomorphism.

Positive results

Definition

Let *L* is η -like linear order. The block $[x]_L$ is called a left (similarly right) local maximum, if there is $y <_L x$ and $y \notin [x]_L$ such that, for any *z* with $[y]_L < [z]_L < [x]_L$, $|[z]_L| < |[x]_L|$.

Theorem (M. Zubkov, 2017)

Let a linear order L be η -like such that the sizes of all left and right local maximums are bounded. If L is low then L has a computable copy.

・ロト ・ 同ト ・ ヨト ・

Positive results

Definition

A final segment J is called a descending cut if J is not empty and has no least element.

Theorem (A. Kach, A. Montalban, 2011)

If a low_n linear order has only finitely many descending cuts then it has a computable copy.

Negative results

Theorem (C. Jockusch, R. Soare, 1991)

There exists a low linear order with no a computable copy.

The order has the form $\eta + 2 + \eta + L_0 + \eta + 3 + \eta + L_1 + \cdots$, where each L_i is equal to either $\omega + \omega^*$, or $\omega + k$, or $k + \omega^*$.

Negative results

Theorem (A. Frolov, 2014)

There exists a low_2 scattered linear order with no a computable

copy.

Only the third condensation of the order is 1.

Definition

A linear order is called scattered, if it does not contain dense suborder.

(日) (同) (三) (三)

Negative results

Theorem (A. Frolov, 2018)

There exists a low η -like linear order with no a computable copy.

Definition

A linear order is η -like, if it does not contain an infinite block.

Negative results

Theorem (A. Frolov, M. Zubkov, in preparation)

There exists a low strongly $\eta\text{-representation}$ of some set with no a computable copy.

Definition

Let $A = \{a_0 < a_1 < a_2 < \cdots \}$. Then a linear order is called strongly η -representation of A, if it has the form $\eta + a_0 + \eta + a_1 + \eta + a_2 + \cdots$.

Open questions

Open question

Has a low scattered linear order a computable copy?

Andrey Frolov Computable vs low linear orders

(日) (同) (三) (

Open questions

Open question

Has a low scattered linear order a computable copy?

Other questions

I have no idea.

Effective categoricity

Theorem (A. Frolov, in preparation)

Let A be a 2-c.e. in and over $\mathbf{0}''$. Then there exists a computable linear order whose degree of categoricity is deg_T(A).

Definition

The degree **x** is the degree of categoricity of a structure \mathcal{A} (if it exists), if \mathcal{A} is **x**-categorical and $\mathbf{y} \geq \mathbf{x}$ for all **y** such that \mathcal{A} is **y**-categorical.

Effective categoricity

Theorem (A. Frolov, in preparation)

Let A be a c.e. in and over $\mathbf{0}''$. Then there exists a computable rigid linear order whose degree of categoricity is deg_T(A).

Sketch of proof (1)

Let
$$Odd = \sum_{q \in \mathbb{Q}} f(q)$$
, where
1) $f(q_1) \neq f(q_2)$ for $q_1 \neq q_2$,
2) $rng(f) = \{1, 3, 5, 7, \dots\}.$

・ロト ・ 同ト ・ ヨト ・

Effective categoricity

Sketch of proof (2)

1)
$$\lambda(A) = 4 + \lambda_0 + 6 + \lambda_1 + 8 + \lambda_2 + 10 + \cdots$$
, where
 $\lambda_i = \begin{cases} Odd + 2 + Odd & \text{if } i \notin A \\ Odd + 2 + Odd + 2 + Odd & \text{if } i \in A \end{cases}$.

2) A is $\Sigma_2^0(\emptyset')$. So, we can build a low copy of $\lambda(A)$.

3) There is a uniform sequence of low orders (and hence computably presentable) of order types λ_i .

Effective categoricity

Theorem (A. Frolov, in preparation)

Let A be a 2-c.e. in and over $\mathbf{0}''$. Then there exists a computable linear order whose degree of categoricity is deg_T(A).

Sketch of proof (1)

$$\tau^{1}(X) = 4 + \tau_{0} + 4 + \tau_{1} + 4 + \tau_{2} + 4 + \cdots, \text{ where}$$

$$\tau_{i} = \begin{cases} 3\eta + 2 + 3\eta & \text{if } i \notin X \\ 3\eta + 2 + 3\eta + 2 + 3\eta & \text{if } i \in X \end{cases}$$

X is $\Sigma^{0}_{2}(\emptyset')$.

・ロト ・ 同ト ・ ヨト ・

Effective categoricity

Sketch of proof (2)

1) Let
$$A = X_1 - X_2$$
, where $X_1 \subseteq X_2$

2)
$$\tau^2(X_1, X_2) = \tau^1(\emptyset'') + 6 + \tau_0 + 5 + \mu_0 + 6 + \tau_1 + 5 + \mu_1 + 6 + \tau_2 + 5 + \mu_2 + 6 + \cdots$$
, where

$$\tau_{i} = \begin{cases} 3\eta + 2 + 3\eta & \text{if } i \notin X_{1} \\ 3\eta + 2 + 3\eta + 2 + 3\eta & \text{if } i \in X_{1} \& i \notin X_{2} \\ \text{ShS}(2, 3) & \text{if } i \in X_{1} \& i \notin X_{2} \end{cases}$$
$$\mu_{i} = \begin{cases} 4\eta & \text{if } i \notin X_{1} \\ 4\eta + 3\eta + 2 + 3\eta & \text{if } i \in X_{1} \& i \notin X_{2} \\ 4\eta + 3\eta + 2 + 3\eta + 2 + 3\eta & \text{if } i \in X_{1} \& i \notin X_{2} \end{cases}$$

Effective categoricity

Theorem (Goncharov, 1975, Goncharov, Dzgoev, 1980, Remmel, 1981)

A linear order is computably categorical iff it is relative computably categorical iff it has only finitely many pairs of successors.

Definition

A computable structure \mathcal{A} is called computably categorical, if any computable copy of \mathcal{A} is computably isomorphic to \mathcal{A} . A computable structure \mathcal{A} is called relative computably categorical, if any X-computable copy of \mathcal{A} is X-computably isomorphic to \mathcal{A} .

Effective categoricity

Theorem (A. Frolov, in preparation)

There exists a computable $0^{\prime\prime}\mbox{-}categorical$ linear order such that it is not relatively $0^{\prime\prime}\mbox{-}categorical.$

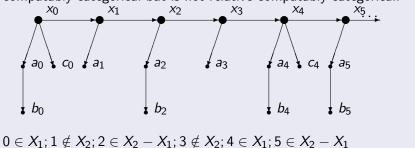
Sketch proof(1)

Let
$$A_1 \subseteq A_2$$
 be c.e. sets.
 $\tau^3(A_1, A_2) = \tau^1(\emptyset'') + 5 + \tau_0 + 5 + \tau_1 + 5 + \tau_2 + 5 + \cdots$, where
 $\tau_i = \begin{cases} 4\eta & \text{if } i \notin A_1 \\ 4\eta + 3\eta + 2 + 3\eta & \text{if } i \in A_1 \& i \notin A_2 \\ 4\eta + 3\eta + 2 + 3\eta + 2 + 3\eta & \text{if } i \in A_1 \& i \in A_2 \end{cases}$

Effective categoricity

Sketch proof(2)

There are c.e. sets $X_1 \subseteq X_2$ such that the graph $G(X_1, X_2)$ is computably categorical but is not relative computably categorical.



4 日 2 4 同 2 4 三 2 4 4

Open questions

Open question

Does the class of all $0^\prime\text{-}\mathsf{categorical}$ linear orders coincide with the class of all relative $0^\prime\text{-}\mathsf{categorical}$ linear orders?

Open questions

Open question

Does the class of all $0^\prime\text{-}\mathsf{categorical}$ linear orders coincide with the class of all relative $0^\prime\text{-}\mathsf{categorical}$ linear orders?

Theorem (C.F.D. McCoy, 2003)

A linear order *L* is relative r'-categorical iff *L* is a finite sum of finite orders, ω , ω^* , and $n\eta$, where *L* contains the limit points of $n\eta$ except for the greatest and the least elements of *L*.

Thanks

Thank you for your attention!

Andrey Frolov Computable vs low linear orders

• • • • • • • • • • •

э