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Theorem (C. Jockusch, R. Soare, 1991)

There exists a low linear order with no a computable copy.

Theorem (R. Downey, M. Moses, 1989)

Any low discrete linear order has a computable copy.
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Introduction

Downey’s Research Program
To describe order properties P which guarantees that if a low linear
order is such that P(L) then L has a computable copy.

Extended Research Program
To describe order properties Pn which guarantees that if a lown

linear order is such that Pn(L) then L has a computable copy.
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Theorem (A. Frolov, 2010 and, independently, A. Montalban, 2009)

A linear order is low iff the order has a 0′-computable copy with
0′-computable successors.
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Positive results

Definition
A linear order is k-quasidiscrete, if each its block is either infinite
(ω, ω∗, ζ), or contains no more than k elements.

A linear order is k-discrete, if each its block is either ζ, or contains
no more than k elements.

A linear order is strongly η-like, if there is k such that each its
block contains no more than k elements.
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Theorem (A. Frolov, 2010)

Any low k-quasidiscrete has a computable copy via a
0′′′-computable isomorphism.

If the order is k-discrete then the isomorphism is 0′′-computable.

If the order is strongly η-like then the isomorphism is
0′-computable.
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Theorem (P. Alaev, A. Frolov, J. Thurber, 2009)

Any low2 1-quasidiscrete linear order has a computable copy via a
0′′′-computable isomorphism.

Andrey Frolov Computable vs low linear orders



Introduction
Positive results
Negative results

Effective categoricity
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Definition
A linear order is called η-like, if it has the form

∑
q∈Q

f (q), where

f : Q→ N \ {0}.

If the range of f is bounded then the order is strongly η-like
(without the greatest and the least elements).

Theorem (A. Frolov, 2006)

Any low strongly η-like has a computable copy.
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Theorem (A. Frolov, M. Zubkov, 2009)

If L is η-like then the following are equivalent:

1) L has a 0′-computable copy such that the successor and the
block relations are both 0′-computable.

2) L ∼=
∑
q∈Q

f (q), where f : Q→ N \ {0} and

epigr(f ) = {(q, n) ∈ Q× N | f (q) ≤ n} ∈ Π0
2.

It means that f is 0′-limitwise monotonic function.

3) L has a computable copy with Π0
1 blocks.
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Theorem (A. Frolov, 2012)

If a low η-like linear order does not contain an infinite strongly
η-like interval, then it has a computable copy via 0′′-computable
isomorphism.

Theorem (A. Frolov, 2012)

If a linear order does not contain an infinite strongly η-like interval
and its condensation is η, then it has a computable copy via
0′′-computable isomorphism.
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Definition
Let L is η-like linear order. The block [x ]L is called a left (similarly
right) local maximum, if there is y <L x and y /∈ [x ]L such that, for
any z with [y ]L < [z ]L < [x ]L, |[z ]L| < |[x ]L|.

Theorem (M. Zubkov, 2017)

Let a linear order L be η-like such that the sizes of all left and right
local maximums are bounded. If L is low then L has a computable
copy.
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Definition
A final segment J is called a descending cut if J is not empty and
has no least element.

Theorem (A. Kach, A. Montalban, 2011)

If a lown linear order has only finitely many descending cuts then it
has a computable copy.
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Theorem (C. Jockusch, R. Soare, 1991)

There exists a low linear order with no a computable copy.

The order has the form η + 2 + η + L0 + η + 3 + η + L1 + · · · ,
where each Li is equal to either ω + ω∗, or ω + k , or k + ω∗.
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Theorem (A. Frolov, 2014)

There exists a low2 scattered linear order with no a computable
copy.
Only the third condensation of the order is 1.

Definition
A linear order is called scattered, if it does not contain dense
suborder.
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Theorem (A. Frolov, 2018)

There exists a low η-like linear order with no a computable copy.

Definition
A linear order is η-like, if it does not contain an infinite block.
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Theorem (A. Frolov, M. Zubkov, in preparation)

There exists a low strongly η-representation of some set with no a
computable copy.

Definition
Let A = {a0 < a1 < a2 < · · · }. Then a linear order is called
strongly η-representation of A, if it has the form
η + a0 + η + a1 + η + a2 + · · · .
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Open question
Has a low scattered linear order a computable copy?

Other questions
I have no idea.
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Theorem (A. Frolov, in preparation)

Let A be a 2-c.e. in and over 0′′. Then there exists a computable
linear order whose degree of categoricity is degT (A).

Definition
The degree x is the degree of categoricity of a structure A (if it
exists), if A is x-categorical and y ≥ x for all y such that A is
y-categorical.
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Theorem (A. Frolov, in preparation)

Let A be a c.e. in and over 0′′. Then there exists a computable
rigid linear order whose degree of categoricity is degT (A).

Sketch of proof (1)

Let Odd =
∑
q∈Q

f (q), where

1) f (q1) 6= f (q2) for q1 6= q2,
2) rng(f ) = {1, 3, 5, 7, . . . }.

Andrey Frolov Computable vs low linear orders



Introduction
Positive results
Negative results

Effective categoricity

Effective categoricity

Sketch of proof (2)

1) λ(A) = 4 + λ0 + 6 + λ1 + 8 + λ2 + 10 + · · · , where

λi =

{
Odd + 2 + Odd if i /∈ A

Odd + 2 + Odd + 2 + Odd if i ∈ A
.

2) A is Σ0
2(∅′). So, we can build a low copy of λ(A).

3) There is a uniform sequence of low orders (and hence
computably presentable) of order types λi .
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Theorem (A. Frolov, in preparation)

Let A be a 2-c.e. in and over 0′′. Then there exists a computable
linear order whose degree of categoricity is degT (A).

Sketch of proof (1)

τ1(X ) = 4 + τ0 + 4 + τ1 + 4 + τ2 + 4 + · · · , where

τi =

{
3η + 2 + 3η if i /∈ X

3η + 2 + 3η + 2 + 3η if i ∈ X

X is Σ0
2(∅′).
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Sketch of proof (2)

1) Let A = X1 − X2, where X1 ⊆ X2

2) τ2(X1,X2) =
τ1(∅′′) + 6 +τ0 + 5 +µ0 + 6 +τ1 + 5 +µ1 + 6 +τ2 + 5 +µ2 + 6 + · · · ,
where

τi =


3η + 2 + 3η if i /∈ X1

3η + 2 + 3η + 2 + 3η if i ∈ X1 & i /∈ X2

ShS(2, 3) if i ∈ X1 & i ∈ X2

µi =


4η if i /∈ X1

4η + 3η + 2 + 3η if i ∈ X1 & i /∈ X2

4η + 3η + 2 + 3η + 2 + 3η if i ∈ X1 & i ∈ X2
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Theorem (Goncharov, 1975, Goncharov, Dzgoev, 1980, Remmel,
1981)

A linear order is computably categorical iff it is relative computably
categorical iff it has only finitely many pairs of successors.

Definition
A computable structure A is called computably categorical, if any
computable copy of A is computably isomorphic to A.
A computable structure A is called relative computably categorical,
if any X -computable copy of A is X -computably isomorphic to A.
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Theorem (A. Frolov, in preparation)

There exists a computable 0′′-categorical linear order such that it is
not relatively 0′′-categorical.

Sketch proof(1)

Let A1 ⊆ A2 be c.e. sets.
τ3(A1,A2) = τ1(∅′′) + 5 + τ0 + 5 + τ1 + 5 + τ2 + 5 + · · · , where

τi =


4η if i /∈ A1

4η + 3η + 2 + 3η if i ∈ A1 & i /∈ A2

4η + 3η + 2 + 3η + 2 + 3η if i ∈ A1 & i ∈ A2
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Sketch proof(2)

There are c.e. sets X1 ⊆ X2 such that the graph G (X1,X2) is
computably categorical but is not relative computably categorical.u u u u u u · · ·x0 x1 x2 x3 x4 x5- - - - - -
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0 ∈ X1; 1 /∈ X2; 2 ∈ X2 − X1; 3 /∈ X2; 4 ∈ X1; 5 ∈ X2 − X1
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Open question

Does the class of all 0′-categorical linear orders coincide with the
class of all relative 0′-categorical linear orders?

Theorem (C.F.D. McCoy, 2003)

A linear order L is relative ′′-categorical iff L is a finite sum of finite
orders, ω, ω∗, and nη, where L contains the limit points of nη
except for the greatest and the least elements of L.
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Thanks

Thank you for your attention!
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