On supercompactness of ω_1 .

Daisuke Ikegami (Shibaura Institute of Technology)

Joint work with Nam Trang

Set Theory Workshop in Kyoto!

November 18-22 in 2019

・ロト・西ト・ヨト・ヨト・ 日・ うらの

More picture of red leaves in Kyoto

This talk is about Set Theory.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

We focus on the richness of ω_1 , the least uncountable cardinal.

Theorem (Cantor)

The real line \mathbb{R} is uncountable.

Definition (Cantor)

The Continuum Hypothesis (CH) states the following:

$$|\mathbb{R}| = \omega_1.$$

The Continuum Hypothesis (CH) ctd.

Theorem (Gödel)

One cannot refute CH in ZFC.

Method: Gödel's Constructible Universe L

```
If V \vDash \mathsf{ZF}, then L \vDash \mathsf{ZFC}+\mathsf{CH}.
```


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Continuum Hypothesis (CH) ctd..

Theorem (Cohen)

One cannot prove CH in ZFC.

Method: Forcing

If $V \vDash \mathsf{ZFC}$, then for some G, $V[G] \vDash \mathsf{ZFC} + \neg \mathsf{CH}$.

(日) (四) (日) (日) (日)

Before Cohen introduced forcing, Gödel anticipated that one canNOT decide the truth-value of CH in ZFC.

Gödel's Program

Solve "mathematically interesting" problems in a "well-justified" axiom system extending ZFC.

A candidate of such an axiom system: ZFC + large cardinal axioms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In ZFC, all the large cardinals are much bigger than ω_1 .

Our interest: Large cardinal properties of ω_1 in ZF

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem

- (Jech/Takeuti) In ZFC, if there is a measurable cardinal, then one can find a model M of ZF such that ω_1 is a measurable cardinal in M.
- (Takeuti) One can replace "a measurable cardinal" in the above item with "a supercompact cardinal".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let κ be a cardinal with $\kappa = |V_{\kappa}|$ in ZFC.

Let κ be a cardinal with $\kappa = |V_{\kappa}|$ in ZFC.

Let G be a $\operatorname{Coll}(\omega, < \kappa)$ -generic filter over V, and set $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \upharpoonright \alpha]}$.

Let κ be a cardinal with $\kappa = |V_{\kappa}|$ in ZFC.

Let G be a $\operatorname{Coll}(\omega, < \kappa)$ -generic filter over V, and set $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \upharpoonright \alpha]}$.

Let $V(\mathbb{R}^*)$ be the least transitive proper class model N of ZF such that $V \subseteq N$ and $\mathbb{R}^* \in N$. Then

Let κ be a cardinal with $\kappa = |V_{\kappa}|$ in ZFC.

Let G be a $\operatorname{Coll}(\omega, < \kappa)$ -generic filter over V, and set $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \upharpoonright \alpha]}$.

Let $V(\mathbb{R}^*)$ be the least transitive proper class model N of ZF such that $V \subseteq N$ and $\mathbb{R}^* \in N$. Then

$$\bullet \ \kappa = \omega_1^{\mathrm{V}(\mathbb{R}^*)} \text{ and } \mathbb{R}^* = \mathbb{R}^{\mathrm{V}(\mathbb{R}^*)},$$

Let κ be a cardinal with $\kappa = |V_{\kappa}|$ in ZFC.

Let G be a $\operatorname{Coll}(\omega, < \kappa)$ -generic filter over V, and set $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \upharpoonright \alpha]}$.

Let $V(\mathbb{R}^*)$ be the least transitive proper class model N of ZF such that $V \subseteq N$ and $\mathbb{R}^* \in N$. Then

② in V(\mathbb{R}^*), every set of reals is Lebesgue measurable and the Lebesgue measure is σ -additive,

Let κ be a cardinal with $\kappa = |V_{\kappa}|$ in ZFC.

Let G be a $\operatorname{Coll}(\omega, < \kappa)$ -generic filter over V, and set $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \upharpoonright \alpha]}$.

Let $V(\mathbb{R}^*)$ be the least transitive proper class model N of ZF such that $V \subseteq N$ and $\mathbb{R}^* \in N$. Then

$$\ \, \bullet \ \, \kappa = \omega_1^{\mathrm{V}(\mathbb{R}^*)} \ \, \text{and} \ \, \mathbb{R}^* = \mathbb{R}^{\mathrm{V}(\mathbb{R}^*)},$$

② in V(ℝ*), every set of reals is Lebesgue measurable and the Lebesgue measure is σ-additive,

O DC holds in $V(\mathbb{R}^*)$ if and only if κ is inaccessible in V, and

Let κ be a cardinal with $\kappa = |V_{\kappa}|$ in ZFC.

Let G be a $\operatorname{Coll}(\omega, < \kappa)$ -generic filter over V, and set $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \upharpoonright \alpha]}$.

Let $V(\mathbb{R}^*)$ be the least transitive proper class model N of ZF such that $V \subseteq N$ and $\mathbb{R}^* \in N$. Then

$$\ \, \bullet \ \, \kappa = \omega_1^{\mathrm{V}(\mathbb{R}^*)} \ \, \text{and} \ \, \mathbb{R}^* = \mathbb{R}^{\mathrm{V}(\mathbb{R}^*)},$$

- ② in V(ℝ*), every set of reals is Lebesgue measurable and the Lebesgue measure is σ-additive,
- **③** DC holds in $V(\mathbb{R}^*)$ if and only if κ is inaccessible in V, and
- if κ is measurable / supercompact in V, then so is $\kappa = \omega_1$ in $V(\mathbb{R}^*)$.

・ロト ・ ロ・ ・ ヨ・ ・ ヨ・ ・ ロ・

Definition (ZF)

For a set X, $\mathcal{P}_{\omega_1}X$ denotes the set of all countable subsets of X.

• F is called a filter on $\mathcal{P}_{\omega_1}X$ if F consists of subsets of $\mathcal{P}_{\omega_1}X$ and

•
$$\emptyset \notin F$$
, $\mathcal{P}_{\omega_1}X \in F$,

•
$$A\in F$$
, $A\subseteq B\subseteq \mathcal{P}_{\omega_1}X\Rightarrow B\in F$, and

•
$$A, B \in F \Rightarrow A \cap B \in F$$

- A filter F on P_{ω1}X is called an ultrafilter if for any subset A of P_{ω1}X, either A or (P_{ω1}X \ A) is in F.
- S A filter F on P_{ω1}X is σ-complete if F is closed under countable intersections.

Definitions & Notations ctd.

Notation

Let *F* be a filter on $\mathcal{P}_{\omega_1}X$. For a formula ϕ , when the set $\{\sigma \in \mathcal{P}_{\omega_1}X \mid \phi(\sigma)\}$ is in *F*, we say "For *F*-measure one many σ , $\phi(\sigma)$ holds".

Definition (ZF)

- A filter F on P_{ω1}X is fine if for any element x of X, for F-measure one many σ, x ∈ σ.
- ② A filter *F* on $\mathcal{P}_{\omega_1}X$ is normal if for any function $f: \mathcal{P}_{\omega_1}X \to \mathcal{P}_{\omega_1}X$, if for *F*-measure one many σ , $f(\sigma) \cap \sigma \neq \emptyset$, then there is some $x_0 \in X$ such that for *F*-measure one many σ , $x_0 \in f(\sigma)$.

Remark

An ultrafilter F is normal iff F is closed under diagonal intersections.

Definition (ZF)

- ω₁ is X-strongly compact if there is a fine σ-complete ultrafilter on P_{ω1}X.
- ω₁ is X-supercompact if there is a fine & normal σ-complete ultrafilter on P_{ω1}X.
- ω₁ is measurable if there is a non-principal σ-complete ultrafilter on ω₁.
- ω_1 is supercompact if for any set X, ω_1 is X-supercompact.

Solovay: the Axiom of Determinacy (AD) implies that ω₁ is measurable.
Martin: AD implies that ω₁ is ℝ-strongly compact.
Solovay: AD_ℝ implies that ω₁ is ℝ-supercompact
while AD does NOT imply ω₁ is ℝ-supercompact.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Woodin; Trang and Wilson: The following are equiconsistent:

- **1** ZFC + "There are ω -many Woodin cardinals.",
- 2 ZF + AD,
- **3** $ZF + DC + \omega_1$ is \mathbb{R} -strongly compact and $\neg \Box_{\omega_1}$, and

- ロ ト - 4 回 ト - 4 □

• ZF + DC + ω_1 is $\mathcal{P}(\omega_1)$ -strongly compact.

Trang and Wilson: The following are equiconsistent:

- ${\rm \textcircled{O}} \ {\sf ZF} + {\sf DC} + {\sf AD}_{\mathbb R} \text{ and }$
- **2** $\mathsf{F} + \mathsf{DC} + \omega_1$ is $\mathcal{P}(\mathcal{P}(\mathbb{R}))$ -strongly compact.

Theorem (Woodin)

Assume that there are proper class many Woodin cardinals which are limits of Woodin cardinals in ZFC.

Then the following hold in the Chang⁺ model (C^+):

- $\textcircled{1} \omega_1 \text{ is supercompact, and}$
- 2 AD.

Definition

The Chang⁺ model (C^+) is of the form L(Ord^{ω}) [($\mathcal{F}_{\gamma} \mid \gamma \in \text{Ord}$)],

where \mathcal{F}_{γ} is the club filter on $\mathcal{P}_{\omega_1}(\gamma^{\omega})$.

Note: C^+ is essentially different from $V(\mathbb{R}^*)$ where AD must fail.

We focus on the influence of the richness of ω_1 on the real line:

Theorem (I., Trang)

Working in ZF, assume that ω_1 is supercompact. Then

the Axiom of Dependent Choice (DC) holds,

We focus on the influence of the richness of ω_1 on the real line:

Theorem (I., Trang)

- the Axiom of Dependent Choice (DC) holds,
- **2** there is NO injection from ω_1 to the reals,

We focus on the influence of the richness of ω_1 on the real line:

Theorem (I., Trang)

- the Axiom of Dependent Choice (DC) holds,
- **2** there is NO injection from ω_1 to the reals,
- in the Chang model L(Ord^{\u03c6}), every set of reals is Lebesgue measurable,

We focus on the influence of the richness of ω_1 on the real line:

Theorem (I., Trang)

- the Axiom of Dependent Choice (DC) holds,
- **2** there is NO injection from ω_1 to the reals,
- in the Chang model L(Ord^{\u03c6}), every set of reals is Lebesgue measurable,
- every set has a sharp, moreover, AD^{L(R)} holds in any set generic extension, and

We focus on the influence of the richness of ω_1 on the real line:

Theorem (I., Trang)

- the Axiom of Dependent Choice (DC) holds,
- **2** there is NO injection from ω_1 to the reals,
- in the Chang model L(Ord^{\u03c6}), every set of reals is Lebesgue measurable,
- every set has a sharp, moreover, AD^{L(R)} holds in any set generic extension, and
- every Suslin set of reals is the projection of a relation on the reals which is determined.

Definition (ZF)

For a set X, $\mathcal{P}_{\omega_1}X$ denotes the set of all countable subsets of X.

• F is called a filter on $\mathcal{P}_{\omega_1}X$ if F consists of subsets of $\mathcal{P}_{\omega_1}X$ and

•
$$\emptyset \notin F$$
, $\mathcal{P}_{\omega_1}X \in F$,

•
$$A\in F$$
, $A\subseteq B\subseteq \mathcal{P}_{\omega_1}X\Rightarrow B\in F$, and

•
$$A, B \in F \Rightarrow A \cap B \in F$$
.

- A filter F on P_{ω1}X is called an ultrafilter if for any subset A of P_{ω1}X, either A or (P_{ω1}X \ A) is in F.
- S A filter F on P_{ω1}X is σ-complete if F is closed under countable intersections.

Notation

Let *F* be a filter on $\mathcal{P}_{\omega_1}X$. For a formula ϕ , when the set $\{\sigma \in \mathcal{P}_{\omega_1}X \mid \phi(\sigma)\}$ is in *F*, we say "For *F*-measure one many σ , $\phi(\sigma)$ holds".

Definition (ZF)

- A filter F on P_{ω1}X is fine if for any element x of X, for F-measure one many σ, x ∈ σ.
- A filter F on P_{ω1}X is normal if for any function f: P_{ω1}X → P_{ω1}X, if for F-measure one many σ, f(σ) ∩ σ ≠ Ø, then there is some x₀ ∈ X such that for F-measure one many σ, x₀ ∈ f(σ).

Want: Given a nonempty set X and a relation R on X with

$$(\forall x \in X) \ (\exists y \in X) \ (x,y) \in R,$$

one can find a function $f: \omega \to X$ such that

$$(\forall n \in \omega) (f(n), f(n+1)) \in R.$$

Want: Given a nonempty set X and a relation R on X with

$$(\forall x \in X) \; (\exists y \in X) \; (x,y) \in R$$
,

one can find a function $f: \omega \to X$ such that

$$(\forall n \in \omega) (f(n), f(n+1)) \in R.$$

Enough to get the following:

(*) There is a countable set $\sigma \subseteq X$ such that

 $(\forall x \in \sigma) \ (\exists y \in \sigma) \ (x, y) \in R.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Want: Given a nonempty set X and a relation R on X with

$$(\forall x \in X) \; (\exists y \in X) \; (x,y) \in R$$
,

one can find a function $f: \omega \to X$ such that

$$(\forall n \in \omega) (f(n), f(n+1)) \in R.$$

Enough to get the following: (*) There is a countable set $\sigma \subseteq X$ such that

$$(\forall x \in \sigma) \ (\exists y \in \sigma) \ (x, y) \in R.$$

How to obtain (*): Fix a fine & normal ultrafilter F on $\mathcal{P}_{\omega_1}X$ and prove that F-measure one many σ witness (*).

To show: For *F*-measure one many σ , $(\forall x \in \sigma) (\exists y \in \sigma) (x, y) \in R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

To show: For *F*-measure one many σ , $(\forall x \in \sigma)$ $(\exists y \in \sigma)$ $(x, y) \in R$. Sketch: Suppose NOT. Then since *F* is an ultrafilter, for *F*-measure one many σ , $(\exists x \in \sigma)$ $(\forall y \in \sigma)$ $(x, y) \notin R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

To show: For *F*-measure one many σ , $(\forall x \in \sigma)$ $(\exists y \in \sigma)$ $(x, y) \in R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sketch: Suppose NOT. Then since F is an ultrafilter, for F-measure one many σ , $(\exists x \in \sigma)$ $(\forall y \in \sigma)$ $(x, y) \notin R$.

By normality of *F*, there is an x_0 s.t. (\mathfrak{C}) for *F*-measure one many σ , ($\forall y \in \sigma$) (x_0, y) $\notin R$.

To show: For *F*-measure one many σ , $(\forall x \in \sigma)$ $(\exists y \in \sigma)$ $(x, y) \in R$.

Sketch: Suppose NOT. Then since F is an ultrafilter, for F-measure one many σ , $(\exists x \in \sigma)$ $(\forall y \in \sigma)$ $(x, y) \notin R$.

By normality of F, there is an x_0 s.t. (\mathfrak{C}) for F-measure one many σ , ($\forall y \in \sigma$) (x_0, y) $\notin R$.

By the assumption $(\forall x \in X) (\exists y \in X) (x, y) \in R$, there is a y_0 in X s.t. $(\bigcup \wp) (x_0, y_0) \in R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

To show: For *F*-measure one many σ , $(\forall x \in \sigma)$ $(\exists y \in \sigma)$ $(x, y) \in R$.

Sketch: Suppose NOT. Then since F is an ultrafilter, for F-measure one many σ , $(\exists x \in \sigma)$ $(\forall y \in \sigma)$ $(x, y) \notin R$.

By normality of *F*, there is an x_0 s.t. (\mathfrak{C}) for *F*-measure one many σ , ($\forall y \in \sigma$) (x_0, y) $\notin R$.

By the assumption $(\forall x \in X)$ $(\exists y \in X)$ $(x, y) \in R$, there is a y_0 in X s.t. $(\bigcup \wp)$ $(x_0, y_0) \in R$.

By fineness of F and that F is a filter, (λ) for F-measure one many σ , $x_0, y_0 \in \sigma$.

To show: For *F*-measure one many σ , $(\forall x \in \sigma)$ $(\exists y \in \sigma)$ $(x, y) \in R$.

Sketch: Suppose NOT. Then since F is an ultrafilter, for F-measure one many σ , $(\exists x \in \sigma)$ $(\forall y \in \sigma)$ $(x, y) \notin R$.

By normality of F, there is an x_0 s.t. (\mathfrak{C}) for F-measure one many σ , $(\forall y \in \sigma) (x_0, y) \notin R$.

By the assumption $(\forall x \in X)$ $(\exists y \in X)$ $(x, y) \in R$, there is a y_0 in X s.t. $(\bigcup \wp)$ $(x_0, y_0) \in R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

By fineness of F and that F is a filter, (λ) for F-measure one many σ , $x_0, y_0 \in \sigma$.

But (\mathfrak{V}) , $(\mathfrak{V}\mathfrak{P})$, and (\mathcal{K}) contradict that F is a filter.

Step 1: Every real has a sharp.

Step 1: Every real has a sharp.

Point: Let r be a real.

Given a non-principal σ -complete ultrafilter μ over ω_1 ,

one can take the ultrapower of $(L[r], \in)$ via μ

and obtain a non-trivial elementary embedding $j \colon L[r] \to L[r]$.

Some words on the proofs ctd...

Sharps for sets from supercompactness of ω_1 ctd.

Step 2: Every set has a sharp.

Some words on the proofs ctd...

Sharps for sets from supercompactness of ω_1 ctd.

Step 2: Every set has a sharp.

Sketch:

Let X be a transitive set and μ be a fine & normal ultrafilter over $\mathcal{P}_{\omega_1}X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Step 2: Every set has a sharp.

Sketch:

Let X be a transitive set and μ be a fine & normal ultrafilter over $\mathcal{P}_{\omega_1}X$. For each σ in $\mathcal{P}_{\omega_1}X$, let a_{σ} be the transitive collapse of (σ, \in) and $M_{\sigma} = \text{HOD}_{\sigma \cup \{\sigma\}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Step 2: Every set has a sharp.

Sketch:

Let X be a transitive set and μ be a fine & normal ultrafilter over $\mathcal{P}_{\omega_1}X$. For each σ in $\mathcal{P}_{\omega_1}X$, let a_{σ} be the transitive collapse of (σ, \in) and $M_{\sigma} = \text{HOD}_{\sigma \cup \{\sigma\}}$.

By Step 1, $a_{\sigma}^{\#}$ exisits and is in M_{σ} .

Step 2: Every set has a sharp.

Sketch:

Let X be a transitive set and μ be a fine & normal ultrafilter over $\mathcal{P}_{\omega_1}X$. For each σ in $\mathcal{P}_{\omega_1}X$, let a_{σ} be the transitive collapse of (σ, \in) and $M_{\sigma} = \text{HOD}_{\sigma \cup \{\sigma\}}$.

By Step 1, $a_{\sigma}^{\#}$ exisits and is in M_{σ} .

Consider the ultraproduct $\prod_{\sigma \in \mathcal{P}_{\omega_1}X}(M_{\sigma}, \in)/\mu$ and let N be its transitive collapse.

Step 2: Every set has a sharp.

Sketch:

Let X be a transitive set and μ be a fine & normal ultrafilter over $\mathcal{P}_{\omega_1}X$. For each σ in $\mathcal{P}_{\omega_1}X$, let a_{σ} be the transitive collapse of (σ, \in) and $M_{\sigma} = \text{HOD}_{\sigma \cup \{\sigma\}}$.

By Step 1, $a_{\sigma}^{\#}$ exisits and is in M_{σ} .

Consider the ultraproduct $\prod_{\sigma \in \mathcal{P}_{\omega_1}X}(M_{\sigma}, \in)/\mu$ and let N be its transitive collapse. For each $x \in X$, let j(x) be represented by $[\sigma \mapsto x]$ via μ . Then j "X is represented by $[\sigma \mapsto \sigma]$.

Step 2: Every set has a sharp.

Sketch:

Let X be a transitive set and μ be a fine & normal ultrafilter over $\mathcal{P}_{\omega_1}X$. For each σ in $\mathcal{P}_{\omega_1}X$, let a_{σ} be the transitive collapse of (σ, \in) and $M_{\sigma} = \text{HOD}_{\sigma \cup \{\sigma\}}$.

By Step 1, $a_{\sigma}^{\#}$ exisits and is in M_{σ} .

Consider the ultraproduct $\prod_{\sigma \in \mathcal{P}_{\omega_1} X} (M_{\sigma}, \in) / \mu$ and let N be its transitive collapse. For each $x \in X$, let j(x) be represented by $[\sigma \mapsto x]$ via μ . Then $j^{*}X$ is represented by $[\sigma \mapsto \sigma]$.

By Łos' Theorem for $\prod_{\sigma \in \mathcal{P}_{\omega_1}X} (M_{\sigma}, \in)/\mu$, the transitive collapse of (j^*X, \in) , that is X, has a sharp in N.

Step 2: Every set has a sharp.

Sketch:

Let X be a transitive set and μ be a fine & normal ultrafilter over $\mathcal{P}_{\omega_1}X$. For each σ in $\mathcal{P}_{\omega_1}X$, let a_{σ} be the transitive collapse of (σ, \in) and $M_{\sigma} = \text{HOD}_{\sigma \cup \{\sigma\}}$.

By Step 1, $a_{\sigma}^{\#}$ exisits and is in M_{σ} .

Consider the ultraproduct $\prod_{\sigma \in \mathcal{P}_{\omega_1}X}(M_{\sigma}, \in)/\mu$ and let N be its transitive collapse. For each $x \in X$, let j(x) be represented by $[\sigma \mapsto x]$ via μ . Then j "X is represented by $[\sigma \mapsto \sigma]$.

By Łos' Theorem for $\prod_{\sigma \in \mathcal{P}_{\omega_1}X}(M_{\sigma}, \in)/\mu$, the transitive collapse of $(j^{"}X, \in)$, that is X, has a sharp in N. Therefore $X^{\#}$ exists in N and so does in V.

- Assume that ω₁ is supercompact in ZF. Then is every Suslin set of reals determined?
- **2** What is the consistency strength of ZF+ " ω_1 is supercompact"?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

THE END.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ