
On supercompactness of ω1.

Daisuke Ikegami
(Shibaura Institute of Technology)

Joint work with Nam Trang



Set Theory Workshop in Kyoto!

November 18–22 in 2019



More picture of red leaves in Kyoto



This talk is about Set Theory.



In this talk...

We focus on the richness of ω1,

the least uncountable cardinal.



The Continuum Hypothesis (CH)

Theorem (Cantor)

The real line R is uncountable.

Definition (Cantor)

The Continuum Hypothesis (CH) states the following:

|R| = ω1.



The Continuum Hypothesis (CH) ctd.

Theorem (Gödel)

One cannot refute CH in ZFC.

Method: Gödel’s Constructible Universe L

If V ⊨ ZF, then L ⊨ ZFC+CH.



The Continuum Hypothesis (CH) ctd..

Theorem (Cohen)

One cannot prove CH in ZFC.

Method: Forcing

If V ⊨ ZFC, then for some G , V[G ] ⊨ ZFC+¬CH.



Gödel’s Program and Large Cardinals

Before Cohen introduced forcing, Gödel anticipated that one canNOT
decide the truth-value of CH in ZFC.

Gödel’s Program

Solve “mathematically interesting” problems in a “well-justified” axiom
system extending ZFC.

A candidate of such an axiom system: ZFC + large cardinal axioms



The topic in this talk

In ZFC, all the large cardinals are much bigger than ω1.

Our interest: Large cardinal properties of ω1 in ZF



Background 1

Theorem
1 (Jech/Takeuti) In ZFC, if there is a measurable cardinal, then one can

find a model M of ZF such that ω1 is a measurable cardinal in M.

2 (Takeuti) One can replace “a measurable cardinal” in the above item
with “a supercompact cardinal”.



The model V(R∗) (Solovay model)

Let κ be a cardinal with κ = |Vκ| in ZFC.

Let G be a Coll(ω,< κ)-generic filter over V, and set R∗ =
∪
α<κ

RV [G↾α].

Let V(R∗) be the least transitive proper class model N of ZF such that
V ⊆ N and R∗ ∈ N. Then

1 κ = ω
V(R∗)
1 and R∗ = RV(R∗),

2 in V(R∗), every set of reals is Lebesgue measurable and the Lebesgue
measure is σ-additive,

3 DC holds in V(R∗) if and only if κ is inaccessible in V, and

4 if κ is measurable / supercompact in V, then so is κ = ω1 in V(R∗).
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Definitions & Notations

Definition (ZF)

For a set X , Pω1X denotes the set of all countable subsets of X .

1 F is called a filter on Pω1X if F consists of subsets of Pω1X and

∅ /∈ F , Pω1X ∈ F ,
A ∈ F , A ⊆ B ⊆ Pω1X ⇒ B ∈ F , and
A,B ∈ F ⇒ A ∩ B ∈ F .

2 A filter F on Pω1X is called an ultrafilter if for any subset A of Pω1X ,
either A or

(
Pω1X \ A

)
is in F .

3 A filter F on Pω1X is σ-complete if F is closed under countable
intersections.



Definitions & Notations ctd.

Notation

Let F be a filter on Pω1X .
For a formula ϕ, when the set {σ ∈ Pω1X | ϕ(σ)} is in F ,
we say “For F -measure one many σ, ϕ(σ) holds”.

Definition (ZF)

1 A filter F on Pω1X is fine if for any element x of X , for F -measure
one many σ, x ∈ σ.

2 A filter F on Pω1X is normal if for any function f : Pω1X → Pω1X ,
if for F -measure one many σ, f (σ) ∩ σ ̸= ∅, then there is some
x0 ∈ X such that for F -measure one many σ, x0 ∈ f (σ).

Remark

An ultrafilter F is normal iff F is closed under diagonal intersections.



Definitions & Notations ctd..

Definition (ZF)

1 ω1 is X -strongly compact if there is a fine σ-complete ultrafilter
on Pω1X .

2 ω1 is X -supercompact if there is a fine & normal σ-complete ultrafilter
on Pω1X .

3 ω1 is measurable if there is a non-principal σ-complete ultrafilter
on ω1.

4 ω1 is supercompact if for any set X , ω1 is X -supercompact.



Background 2

Solovay: the Axiom of Determinacy (AD) implies that ω1 is measurable.

Martin: AD implies that ω1 is R-strongly compact.

Solovay: ADR implies that ω1 is R-supercompact

while AD does NOT imply ω1 is R-supercompact.



Background 2 ctd.

Woodin; Trang and Wilson: The following are equiconsistent:

1 ZFC + “There are ω-many Woodin cardinals.”,

2 ZF + AD,

3 ZF + DC + ω1 is R-strongly compact and ¬□ω1 , and

4 ZF + DC + ω1 is P(ω1)-strongly compact.

Trang and Wilson: The following are equiconsistent:

1 ZF + DC + ADR and

2 ZF + DC + ω1 is P
(
P(R)

)
-strongly compact.



Recent Results

Theorem (Woodin)

Assume that there are proper class many Woodin cardinals which are
limits of Woodin cardinals in ZFC.
Then the following hold in the Chang+ model (C+):

1 ω1 is supercompact, and

2 AD.

Definition

The Chang+ model (C+) is of the form L(Ordω) [(Fγ | γ ∈ Ord)],

where Fγ is the club filter on Pω1(γω).

Note: C+ is essentially different from V(R∗) where AD must fail.



Our Results

We focus on the influence of the richness of ω1 on the real line:

Theorem (I., Trang)

Working in ZF, assume that ω1 is supercompact. Then

1 the Axiom of Dependent Choice (DC) holds,

2 there is NO injection from ω1 to the reals,

3 in the Chang model L(Ordω), every set of reals is Lebesgue
measurable,

4 every set has a sharp, moreover, ADL(R) holds in any set generic
extension, and

5 every Suslin set of reals is the projection of a relation on the reals
which is determined.
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Reviewing Definitions & Notations

Definition (ZF)

For a set X , Pω1X denotes the set of all countable subsets of X .

1 F is called a filter on Pω1X if F consists of subsets of Pω1X and
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Reviewing Definitions & Notations ctd.

Notation

Let F be a filter on Pω1X .
For a formula ϕ, when the set {σ ∈ Pω1X | ϕ(σ)} is in F ,
we say “For F -measure one many σ, ϕ(σ) holds”.

Definition (ZF)

1 A filter F on Pω1X is fine if for any element x of X , for F -measure
one many σ, x ∈ σ.

2 A filter F on Pω1X is normal if for any function f : Pω1X → Pω1X ,
if for F -measure one many σ, f (σ) ∩ σ ̸= ∅, then there is some
x0 ∈ X such that for F -measure one many σ, x0 ∈ f (σ).



Some words on the proofs

DC from supercompcatness of ω1:

Want: Given a nonempty set X and a relation R on X with

(∀x ∈ X ) (∃y ∈ X ) (x , y) ∈ R,

one can find a function f : ω → X such that

(∀n ∈ ω)
(
f (n), f (n + 1)

)
∈ R.

Enough to get the following:
(∗) There is a countable set σ ⊆ X such that

(∀x ∈ σ) (∃y ∈ σ) (x , y) ∈ R.

How to obtain (∗): Fix a fine & normal ultrafilter F on Pω1X
and prove that F -measure one many σ witness (∗).
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Some words on the proofs ctd.

DC from supercompcatness of ω1 ctd.:

To show: For F -measure one many σ, (∀x ∈ σ) (∃y ∈ σ) (x , y) ∈ R.

Sketch: Suppose NOT. Then since F is an ultrafilter,
for F -measure one many σ, (∃x ∈ σ) (∀y ∈ σ) (x , y) /∈ R.

By normality of F , there is an x0 s.t.
(む) for F -measure one many σ, (∀y ∈ σ) (x0, y) /∈ R.

By the assumption (∀x ∈ X ) (∃y ∈ X ) (x , y) ∈ R, there is a y0 in X s.t.
(じゅ) (x0, y0) ∈ R.

By fineness of F and that F is a filter,
(ん) for F -measure one many σ, x0, y0 ∈ σ.

But (む), (じゅ), and (ん) contradict that F is a filter.
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Some words on the proofs ctd..

Sharps for sets from supercompactness of ω1

Step 1: Every real has a sharp.

Point: Let r be a real.
Given a non-principal σ-complete ultrafilter µ over ω1,

one can take the ultrapower of (L[r ],∈) via µ

and obtain a non-trivial elementary embedding j : L[r ] → L[r ].
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Some words on the proofs ctd...

Sharps for sets from supercompactness of ω1 ctd.

Step 2: Every set has a sharp.

Sketch:
Let X be a transitive set and µ be a fine & normal ultrafilter over Pω1X .
For each σ in Pω1X , let aσ be the transitive collapse of (σ,∈)
and Mσ = HODσ∪{σ}.

By Step 1, a#σ exisits and is in Mσ.

Consider the ultraproduct
∏

σ∈Pω1X
(Mσ,∈)/µ and let N be its transitive

collapse. For each x ∈ X , let j(x) be represented by [σ 7→ x ] via µ.
Then j“X is represented by [σ 7→ σ].

By  Los’ Theorem for
∏

σ∈Pω1X
(Mσ,∈)/µ,

the transitive collapse of (j“X ,∈), that is X , has a sharp in N.
Therefore X# exists in N and so does in V .
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Open Questions

1 Assume that ω1 is supercompact in ZF. Then is every Suslin set of
reals determined?

2 What is the consistency strength of ZF+ “ω1 is supercompact”?



THE END.


